
© Sergey Svetunkov, 2024. Published by Peter the Great St. Petersburg Polytechnic University

Technoeconomics. 2024, Vol. 3, No. 2 (9). Pp. 4–21.
Техноэкономика. 2024, Том 3, № 2 (9). С. 4–21.

Scientific article
UDC 330.47
DOI: https://doi.org/10.57809/2024.3.2.9.1

ELEMENTARY IMAGE OF THE KOLMOGOROV-GABOR  
POLYNOMIAL IN ECONOMIC MODELING

Sergey Svetunkov ✉

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
✉ sergey@svetunkov.ru

Abstract. Today, neural networks are actively used in modeling complex nonlinear 
dependencies. Amid such a rapid growth of interest in this powerful tool for modeling various 
objects and processes, research in the natural sciences and engineering, the work on the 
application of neural networks in economics is vanishingly small. This is explained both by 
the complexity of the modeling tool itself - neural networks, and by the object of modeling 
- the evolving economy. At the dawn of the development of neural networks, the method of 
modeling processes using Kolmogorov-Gabor polynomials (or Wiener series) was considered as 
an alternative. For various reasons, this method lost the competitive battle, and neural networks 
prevail. The article presents a method and technique for constructing an elementary image of 
the Kolmogorov-Gabor polynomial and shows that today it can be used as an alternative to 
neural networks in modeling of economic processes.
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Аннотация. Сегодня при моделировании сложных нелинейных зависимостей активно 
используют нейронные сети. На фоне такого бурного роста интереса к этому мощному 
инструменту моделирования различных объектов и процессов исследования естествен-
но-научных и технических наук работы по применению нейронных сетей в экономике 
исчезающе малы. Это объясняется как сложностью самого инструмента моделирования 
- нейронные сети, так и объекта моделирования – эволюционирующая экономика. На 
заре становления нейронных сетей в качестве альтернативы им рассматривался метод 
моделирования процессов с помощью полиномов Колмогорова-Габора (или рядов Вине-
ра). По разным причинам этот метод проиграл конкурентную борьбу и нейронные сети 
превалируют. В статье приводится метод, и методика построения элементарного образа 
полинома Колмогорова-Габора и показывается, что он сегодня вполне может использо-
ваться как альтернатива нейронным сетям в моделировании экономических процессов.

Ключевые слова: коэффициент корреляции, номинальные данные, коэффициент Юла, 
коэффициент Пирсона, корреляционные связи
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Introduction
From the very beginning of the emergence of the task of modeling complex interrelation-

ships, scientists have used mathematical statistics to LSM to solve it, directing their efforts to 
identify causal relationships between variables and to explicitly determine the form of these 
identified interrelations. 

This form of interrelation took the form of one of the elementary functional dependencies of 
the indicator y on the factors xi. It was believed that a correctly chosen function, if it does not 
express the mathematical expectation of the process, is its best approximation. 

The main problem that scientists faced when constructing and using a regression model or 
a set of models was precisely the difficulty of determining the type of functions describing the 
mathematical expectation, since an error made in this case leads to incorrect modeling results. 
In the univariate case, this task is solved with a certain degree of success using correlation and 
regression analysis. 

However, in multivariate dependencies, determining the form and nature of the influence of 
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each factor on the result is a very difficult and rarely successfully solved problem.
Let's demonstrate the complexity of this task with a simple example by generating data for a 

conditional example. Let the influencing factors change as follows:
x i x x i x x x xi i i i i i i i i1 2 1 3 2 1

0 1

1
0 5 0 5� � � � � � �, , , , cos( )

,� �
And now let's generate the resulting feature using the specified three variables by the formula:
y x x xi i i i� � �

1 2 3

2
2 0 1,    (1)

We are faced with a nonlinear multifactorial functional dependency, and since it does not 
contain a random component, we can expect a definitive determination of the form of this de-
pendency. We will change i from 1 to 50 and generate data for a hypothetical task based on this.

Now let's assume that the form of this dependency is unknown to us and, based on the 
available statistical data about the factors and the modeled variable, it is necessary to find this 
dependency. The first thing to do is to calculate the correlation matrix. We will obtain the fol-
lowing.

Table 1. Correlation matrix for a conditional example

x i1 x i2 x i3 yi

x i1 1

x i2 0,8103 1

x i3 0,9931 0,8674 1

yi 0,9746 0,8907 0,9823 1

What conclusion will the researcher draw from these data? Since the pairwise correlation 
coefficients are above 0.80, these data should be described using a linear multifactorial model. 
The LSM estimates of such a model based on the available data will give the following form of 
the model:
y x x xi i i i
 � � � �13 16 5 56 9 67 11 34

1 2 3
, , , ,    (2)

It has excellent statistical characteristics, which tell the researcher about its significance. 
However, the obtained model terribly described the original formula (1) and does not corre-
spond at all to the law it describes! And yet, many economists, having received an econometric 
model of type (2), will try to give an economic interpretation to each coefficient obtained, for 
example, that an increase of the third factor by one unit will reduce the result by 9.67 units. 
From the true situation, which is modeled by (1), follows a completely different influence of the 
third factor – its increase will nonlinearly enhance the result. That is, mathematical statistics 
have yielded a result opposite to what is the case.

If we now take a closer look at the data in Table 1, we can notice that there is a strong and 
almost linear relationship between the first and third factors, as the pairwise correlation coeffi-
cient between them is r = 0.9931. Therefore, the effect of multicollinearity may be present in 
the modeling results. One of these two correlated factors should be discarded when building the 
model. Let it be the factor x1i.

Then, the econometric model, which takes multicollinearity into account, will look like this:
y x xi i i
 � � �1 38 4 47 18 79

2 3
, , ,    (3)

It also has excellent statistical characteristics, indicating its statistical significance. But it is 
as far from the truth as model (2). And if we now give an economic interpretation to the new 
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model (3), we can say that an increase of the third factor by one unit leads to an increase in 
the result by 4.47 units, which is far from the real influence and opposite to the conclusions of 
model (2).

It is impossible to find the form of the real dependency (1) using methods of mathematical 
statistics.

These methodological difficulties in applying structural regression models in economic mod-
eling have been understood for a long time, but there was no alternative until cybernetics ap-
peared. Cybernetics took various steps away from regression, proposing as an alternative the 
'black box' model, into which certain factors xi are fed, and the values yare observed at the 
output. How the input is transformed into the output is of no interest to anyone. In managing 
the 'black box,' the task was set as follows: to select such values of factors xi that the output y 
observed would be close to a predetermined Y. Methods for selecting optimal values of xi were 
developed in cybernetics.

In parallel with the tasks of optimal control of complex systems, cybernetics solved another 
problem – pattern recognition. It differed from the task of optimal control in that, given the 
input parameters xi and known values of the output parameter y, it was necessary to adjust the 
'black box' so that this correspondence between input and output matched the given pattern 
Y. Here, the object of adjustment was not the data, but the 'black box' model, or rather – its 
coefficients.

Scientists proposed various mathematical models of this 'black box,' and over time, the model 
of artificial neurons combined into a single neural network proved to be the most accurate and 
convenient. Inside the 'black box' - the neural network - when solving the task, a multi-iterative 
recalculation of the network's coefficients occurs so that the output result is obtained with the 
specified accuracy. The obtained values of the neural network coefficients are of no interest, as 
they are not statistical characteristics of the process but are parameters of the 'black box.'

With the help of neural networks, many diverse tasks have been solved, and we have come 
close to the task of creating artificial intelligence. However, examples of successful application 
of neural networks in economics are exceedingly rare.

This can be explained by two main reasons.
The first is that building and using neural networks requires the specialist to have a deep 

knowledge of several narrowly specialized sections of mathematics and programming. Typical-
ly, scientists engaged in economic research do not possess such knowledge. Therefore, at best, 
they apply templates of existing neural networks to one or another forecasting object. The basis 
for applying such a template is the known number of inputs (factors) and outputs (indicators).

The second reason is due to the specific properties of the economy as an object of research. 
The fact is that neural networks were developed as a method of modeling complex objects oper-
ating under conditions of homogeneity, characterized by a finite set of properties and features. 
In contrast, economic processes are mostly heterogeneous and evolving – the set of properties 
and features of these processes changes over time and is not finite. The exception is perhaps 
financial and consumer markets under conditions of stable economic conjuncture. Here neural 
networks show very good results. But such periods of relative stability are eventually interrupted 
by some external influences on the markets, and the processes become heterogeneous, evolu-
tionary, and chaotic. In such situations, neural networks stop working well.

Thus, the task of modeling complex economic objects is more successfully solved by meth-
ods of mathematical statistics than by neural networks or their analogs. Therefore, the task of 
creating a simple and understandable alternative to neural networks is relevant.
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Materials and Methods
A neural network consists of a collection of j interconnected neurons, each of which repre-

sents a superposition of linear and non-linear functions: 

y f a a xj i i
i

n
 � �

�
�( )

0

1    (4)
Here:
y j  – output signal of j-th neuron;
f – activation function or transfer function; 
ai – weight of the i-th signal (factor);
xi – i-th component of the input signal or the factor itself;
i = 1, …, n – neuron input number; 
n – number of neuron inputs; 
a0 – coefficient characterizing the displacement.
To avoid problems that may arise with the scales of variables when working with neural net-

works, all variables are preliminarily normalized.
Two aspects are fundamentally important for the neural network: the form of the function f 

and the structure of the neural network, that is, the number of neurons (4) and their intercon-
nection with each other.

At the very beginning of the use of neural networks, the computational capabilities of their 
implementation were not high, so the function f was often considered as the possibility of acti-
vation y = 1 or non-activation y = 0 of the output from the neuron, and in the case when it was 
necessary to quantitatively transform the input values xi, a linear or piecewise-linear function 
was used. Today, the logistic (sigmoid) function is most often used, allowing for a nonlinear 
transformation of input signals into output. The logistic is also convenient because its first de-
rivative is easily calculated and computed, which is important when estimating the coefficients 
of all neurons (4) by numerical methods, since one of the gradient methods (Yunze, 2022) is 
most often used for this.

LSM or other methods of mathematical statistics are not directly suitable for solving this 
task. Indeed, for example, in a simple two-layer neural network, the variables xi are considered 
as inputs to the first layer of m neurons of the network. In each neuron of the first layer (4), 
they are transformed into outputs yj (j = 1, 2, …, m), which are inputs to the second layer 
neural network. At the output of the second layer, the following is obtained:

y f b a yj j
j

m
� �� �

�
�( )

0

1
   (5)

If we now substitute (4) into (5), we obtain the following superposition of functions:

y f b a f a a xj
j

m

j j ij i
i

n
 � � �

� �
� �( ( ))

0

1

0

1
   (6)

Real values are described by this model with some error:
� � �y y   (7)
the minimization of whose squares will give LSM estimates. But it is not possible to directly 

estimate the coefficients of such a simple two-layer neural network in the case of a nonlinear 
form of the transfer function, since the calculation of the gradients of the error function (7) by 
the model coefficients (6) represents a complex task, leading to the need to solve a system of 
complex nonlinear equations. It is significantly easier and more convenient to solve this prob-
lem using numerical methods, most often using the gradient method.

As can be seen from the simple explanation of the essence of building neural networks, their 
use requires a good knowledge of mathematics and programming skills, as training a neural 
network is a multi-iterative procedure with many parameters being estimated simultaneously, 
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which can only be done using some advanced programming language.
When a neural network, trained on a sample from the general population, is tested on a vali-

dation set from this general population, it should give good results. If this does not happen, the 
network is complicated and trained again. And this continues until the network is well 'tuned'.

If non-stationary and irreversible processes are modeled, then neural networks demonstrate 
their inadequacy. And it is such processes that are many of the processes occurring in the econ-
omy. Today many scientists are trying to solve this problem by improving neural networks. One 
of such directions is the theory of neuro-Bayesian methods (Volterra, 1930), but this theory so 
far cannot boast any tangible results and admits that: 'now this area is only at the very begin-
ning of the path and is waiting for new researchers' (Lusia, 2018). Some hopes in this direction 
are pinned on recurrent neural networks (Mekhovich, 2014). In traditional neural networks, 
it is assumed that the input factors and output factors are independent, and recurrent neural 
networks take into account the presence of some influence of previous observations on current 
observations due to feedback between some neurons.

One of the first publications on this topic among Russian economists is the article by As-
trakhantseva I.A., Astrakhantsev R.G., and Kutuzova A.S. (Astrakhantseva, 2020). Having 
identified potential factors of inflation in the Russian Federation, the authors conducted a 
correlation-regression analysis and determined that inflation can be described by two factors: 
the exchange rate of the dollar to the ruble and the growth of citizens' debt excluding currency 
revaluation. A simple recurrent neural network built by them on this data set predicts inflation 
well for one observation and very poorly predicts all subsequent values.

Physicists Kondratenko V. and Kuprin Y. built a recurrent neural network capable of pre-
dicting the sign of price increases in the foreign exchange market with a probability of success 
just over 50% (Kiselev, 2018). For this, they used the logarithm of the ratio of the current 
price to the previous price of exchange rates of the American dollar, Japanese yen, Swiss franc, 
British pound, and euro.

Among the few foreign publications on this topic, several articles can be highlighted. Yunze 
Tao, Xia Sheng presented a method for predicting the exchange rate of the euro to the US 
dollar using a simple recurrent neural network in which the factors were past daily exchange 
rates of the euro and the US dollar (Yunze, 2022). It is difficult to assess how well this network 
works, as no comparison with other forecasting methods is provided in the article.

Zhiguo Qiu, Emese Lazar, and Keiichi Nakata showed comparative results of using models 
based on recurrent neural networks with state tracking, feedforward neural networks, as well as 
VAR vector autoregressions and exponential smoothing models [30]. Six asset return time series 
were modeled over a period of more than 20 years. Recurrent models showed the best results.

Ruofan Liao, Petchaluck Boonyakunakorn, Napat Harnpornchai, and Songsak Srioonchit-
ta used a recurrent neural network to predict the exchange rate of the US dollar to the yuan 
from 12 other indicators, shifted up to d lags back plus the indicator itself, shifted up to d lag 
(Wiener, 1958). They compared this network with ARIMA and showed that if ARIMA gave an 
average forecast error square of 0.211, then their neural network - 0.010.

These results are encouraging but not impressive.
Returning to the origins of the formation of neural networks, it should be noted that the 

director of the Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR A.G. 
Ivakhnenko in the 1970s proposed another path of unstructured modeling of complex objects 
using complex polynomials. In this regard, he proposed an interesting method of decomposing 
many complex tasks, the essence of which can be understood from a simple example (Gabor, 
1961).

Suppose there is a need to build a model of a high-degree polynomial on a small number of 
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observations:
y a a t a t a t a tt
 � � � � �

0 1 2

2

3

3

4

4
   (8)

It is proposed to divide this polynomial into a system of three series.
The first row is:

y b b t b tt1 0 1 2

2
 � � �    (9)

The second row is:
y c t c tt2 1

3

2

4
 � �    (10)

It is easy to notice that the first row is a model that includes the first three terms of polyno-
mial (8), and the model of the second row includes two other components of this polynomial.

The coefficients of models (9) and (10) can be easily estimated, for example, using LSM. 
To form the overall polynomial (8), it is proposed to estimate the coefficients of the third row 
model using LSM:

y d d y d yt t t
� � �� � �

0 1 1 2 2
   (11)

Into this model, as you can see, the calculated values of the variable are substituted, which 
are computed according to (9) and (10). What does this mean? If we substitute into (11) not 
the calculated values, but the formulas by which they are obtained, that is, models (9) and (10), 
then we get:

y d d b b t b t d c t c t
d d b d b t d b t
t
 � � � � � � �

� � �
0 1 0 1 2

2

2 1

3

2

4

0 1 0 1 1 1 2

( ) ( )

( )
22

2 1

3

2 2

4� �d c t d c t    (12)
From where it is easy to determine the relationship between the coefficients of the original 

polynomial (8) and the coefficients of the multi-row system (9) - (11):
a d d b a d b a d b a d c a d c

0 0 1 0 1 1 1 2 1 2 3 2 1 4 2 2
� � � � � �, , , ,           (13)

Since the multi-row procedure for estimating the coefficients of the polynomial is a linear 
superposition of functions linear with respect to unknown coefficients, the estimates (13) will 
coincide with the LSM estimates applied directly to (9). This decomposition method proposed 
by A.G. Ivakhnenko was suggested for constructing various nonlinear models, and most often 
it was proposed to use a finite polynomial decomposition of the nonlinear dependency into 
additive components.

In 1930, V. Volterra published the work 'Theory of Functionals and of Integral and Inte-
gro-Differential Equations' where he derived series that allow the study of systems with soft 
inertial nonlinearities (Zhiguo, 2024). These series are actively used today in solving technical 
and engineering tasks of modeling nonlinear processes (Ivakhnenko, 1984). In 1958, N. Wiener 
in the monograph 'Nonlinear Problems in the Theory of Random Processes' published a modi-
fication of the Volterra series. He proposed a method of approximating a nonlinear dependency, 
starting with simple elements, to which new and new nonlinear terms are successively added: 
'Our decomposition differs from the usual Fourier decomposition, as we have a countable set 
of functionals, but the overall task remains the same' (Schmidhuber, 2015). Today, mathema-
ticians call this decomposition the Wiener series, and for the discrete case, this series will take 
the form:

y a a x a x x a x x xi i ij i j
j

m

i

m

i

m

ijk i j k
k

m

j

m

i
� � � � �

��� ��
��� ��0

111 11

...
��
�

1

m

   (14)
The same problem was independently solved in 1956 by A.N. Kolmogorov and in 1961 by D. 

Gabor (Gabor, 1961). Since A.G. Ivakhnenko, who first used series (14), called it the Kolmog-
orov-Gabor polynomial, this name prevails in domestic science today, and we will also adhere 
to this naming convention.

Series (14) is indeed very convenient for modeling nonlinear systems with weak nonlinear-
ity based on available statistical data. Moreover, like a neural network, it connects the input 
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variables xi with the output ywithout defining the nature and form of the relationship between 
them, that is, it does so in an unstructured way, just like neural networks, which allows it to be 
considered as an alternative to neural networks. However, unlike neural networks, the struc-
ture of the polynomial is fixed and strictly defined. Any researcher with m input variables will 
always construct the same polynomial (14). Neural networks can connect variables xi with the 
output y in many ways – they can be single-layer or multi-layer, vary the connections between 
neurons, add recursive connections, etc. This means that the dependency between xi and y can 
be described using neural networks in many ways – better or worse, simpler or more complex. 
With series (14), this relationship can only be modeled in the same way.

And if we compare (14) with (6), we can notice an important advantage of the polynomial 
over the neural network: it represents a linear function in terms of parameters, whose coeffi-
cients can be easily found by any statistical method directly, without resorting to numerical 
methods, by solving a system of linear equations with unknown coefficients.

In the 60s and 70s of the 20th centuries, when the polynomial (14) competed with neural 
networks in pattern recognition tasks, calculations were performed on analog machines. These 
machines consisted of electrical devices that transformed electrical signals similarly to mathe-
matical operations. For example, about the first neural networks, A.G. Ivakhnenko reported: 
"In the first design of the perceptron, automatic potentiometers with servomotors were used 
as associating elements. The machine used 512 such potentiometers. They were too large and 
expensive. Now in the perceptron, so-called biaks are used – magnetic elements with ferrite 
cores. Functionally, biaks reproduce the actions of a two-position polarized relay or trigger 
(Dyachkov, 2017).

At that historical moment in the development of computing technology, simple multipliers 
and adders in computers for the use of artificial neurons were simpler and cheaper than nonlin-
ear converters for the use of the Kolmogorov-Gabor polynomial, which were also less reliable in 
operation. This predetermined that neural networks became the main tool for pattern recogni-
tion, and the Kolmogorov-Gabor polynomial is only occasionally used for modeling nonlinear 
dependencies. Mainly these are works in the field of engineering sciences (Balasanyan, 2016). 
Such works are not encountered in economics. Conditionally economic can be considered only 
the article with the results of modeling the relationship between electrical power and a set of 
technical and economic indicators of the operation of the Ryazan GRES (Belov, 2008), as well 
as the article on the application of (14) for clustering industrial enterprises (Kiselev, 2018). In 
all these works, not the Kolmogorov-Gabor polynomial is used, but the method of sequential 
approximation to it - MGUA as developed by A.G. Ivakhnenko.

Unfortunately, the Kolmogorov-Gabor polynomial has a significant drawback: as the num-
ber of i variables x, describing the behavior of the variable y, increases, the number of terms N 
in the polynomial (14) sharply increases. Indeed, if for i = 2 the number of terms in series (14) 
will be equal to N = 6, then for i = 5 it becomes equal to N = 252. And this is a sharp increase 
in the dimensionality of the problem being solved.

For example, if modeling the dependence of several variables yj on x, then for i = 5 and j = 
4 we get N = 1008 unknown coefficients of the polynomial. And when using a two-layer fully 
connected feedforward neural network to solve this problem, it is necessary to estimate from 
twenty to forty unknown coefficients.

Precisely because of the high dimensionality of the problem, this tool is practically not used 
in solving real modeling tasks. Thus, I.I. Sulyaev, mentioning the Kolmogorov-Gabor polyno-
mial when setting the task of modeling the process of mixing oxygen and air for the oxidation 
of sulfide copper-nickel raw materials in a metallurgical furnace, pointed out the enormous size 
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of this polynomial and subsequently used a neural network (Sulyaev, 2014).
Pointing out the enormous dimensionality of the problem with many initial variables, A.G. 

Ivakhnenko proposed a method of step-by-step decomposition of the model - "formation of a 
multi-row system", the essence of which was outlined earlier in (8) – (13).

For the case of three factors, the full Kolmogorov-Gabor polynomial will be written as fol-
lows (Ivakhnenko, 1971):

y a a x a x a x a x a x a x a x x a x x
a x x

 � � � � � � � � � �
0 1 1 2 2 3 3 4 1

2

5 2

2

6 3

2

7 1 2 8 1 3

9 2 33 10 1

3

11 2

3

12 3

3

13 1

2

2 14 1

2

3 15 1 2

2

16 2

2� � � � � � �a x a x a x a x x a x x a x x a x x
33

17 1 3

2

18 2 3

2

19 1 2 3

�

� �a x x a x x a x x x    (15)
At the first stage, it is proposed to use partial (support) polynomials with two factors, each 

of which approximates the modeled indicator ywith its own approximation error ε i :
y y b b x b x b x b x b x x� � � � � � � � �

1 1 0 1 1 2 2 3 1

2

4 2

2

5 1 2 1
 � �    (16)

y y c c x c x c x c x c x x� � � � � � � � �
2 2 0 1 1 2 3 3 1

2

4 3

2

5 1 3 2
 � �    (17)

y y d d x d x d x d x d x x� � � � � � � � �
3 3 0 1 2 2 3 3 2

2

4 3

2

5 2 3 3
 � �    (18)

Using the method of least squares, one can easily find the coefficients (16) - (18). After that, 
using the calculated values of the variables obtained from (7) – (9) as factors, one can find the 
coefficients of another polynomial using the method of least squares:

y y e e y e y e y e y y y� � � � � � � �
4 4 0 1 1 2 2 3 3 4 1 2 3 4
 � �    (19)

And now, substituting (16), (17) and (18) into (19), we get:

z e e b b x b x b x b x b x x e c c x c x c� � � � � � � � � � �
0 1 0 1 1 2 2 3 1

2

4 2

2

5 1 2 2 0 1 1 2 3
( ) (

33 1

2

4 3

2

5 1 3

3 0 1 2 2 3 3 2

2

4 3

2

5 2 3 4

x c x c x x
e d d x d x d x d x d x x e

� � �

� � � � � �

)

( ) (( )

(

b b x b x b x b x b x x
c c x c x c x c x

0 1 1 2 2 3 1

2

4 2

2

5 1 2

0 1 1 2 3 3 1

2

4

� � � � � �

� � � �
33

2

5 1 3 0 1 2 2 3 3 2

2

4 3

2

5 2 3
� � � � � � �c x x d d x d x d x d x d x x) ( )

(20)
If we now compare the resulting expression with (15), we can see that the coefficient a0 

corresponds to a combination of coefficients of the equations:
a e e b e c e d e b c d

0 0 1 0 2 0 3 0 4 0 0 0
� � � � �    (21)

In the same way, correspondences can be found for other coefficients of the complete Kol-
mogorov-Gabor polynomial (15):
a e b e c e b c d e b c d
a e b e c e d e b c d

1 1 1 2 1 4 1 0 0 4 0 1 0

2 1 2 2 2 3 1 4 2 0 0

� � � �
� � � � �

,

ee b c d

a e b c d b c d b c d b c d b c d b c

4 0 0 1

19 4 1 2 1 2 1 2 5 2 0 2 5 0 1 0 6 0

,

...

(� � � � � �
11 5 5 0 2 0 5 1
d b c d b c d� � ).       (22)

Some scientists suggest considering this correspondence as estimates of the Kolmogorov-Ga-
bor polynomial. However, (20) is not identical to (15), since in addition to the 20 terms of 
the Kolmogorov-Gabor polynomial, polynomial (20) contains many other terms that are not 
present in (15). If we expand the brackets (20) and group the resulting terms of the polynomial, 
we will obtain a significantly more complex formation. In order not to clutter the description 
of the obtained polynomial with its coefficients, let's assume that in the final polynomial they 
are all equal to one. Then we will get:
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z x x x x x x x x x x x x
x x x x

� � � � � � � � � � � � � �

�

1
1 2 3 1

2

2

2

3

2

1

3

2

3

3

3

1

4

2

4

3

4

1 2 1 3
�� � � � � � � � � �x x x x x x x x x x x x x x x x x x

x
2 3 1 2

2

1 3

2

1 2

3

1 3

3

1 2

4

1 3

4

1

2

2 1

2

3

1

2xx x x x x x x x x x x x x x x x x
2

2

1

2

3

2

1

2

2

3

1

2

3

3

1

2

2

4

1

2

3

4

1

3

2 1

3

3 1

3

2

2� � � � � � � � �� �

� � � � � � �

x x
x x x x x x x x x x x x x x x

1

3

3

2

1

3

2

3

1

3

3

3

1

3

2

4

1

3

3

4

1

4

2 1

4

3 1

4

2

2

1

44

3

2

1

4

2

3

1

4

3

3

2 3

2

2 3

3

2 3

4

2

2

3 2

2

3

2

2

2

3

3

x x x x x
x x x x x x x x x x x x

� � �

� � � � � � xx x x x x x x x x x x x x x x x
x x

2

2

3

4

2

3

3 2

3

3

2

2

3

3

3

2

3

3

4

2

4

3 2

4

3

2

2

4

3

3

1

� � � � � � � �

22 3 1 2

2

3 1 2 3

2

1 2

3

3 1 2 3

3

1 2

4

3 1 2 3

4

1 2

2x x x x x x x x x x x x x x x x x x x x x� � � � � � � xx x x x x x x
x x x x x x x x x x x x

3

2

1 2

2

3

3

1 2

3

3

2

1

2

2 3 1

2

2

2

3 1

2

2 3

2

1

2

2

2

3

2

� � �

� � � �� � �

� � � �

x x x x x x
x x x x x x x x x x x x x x

1

2

2

3

3 1

2

2 3

3

1

3

2 3 1

3

2

2

3 1

3

2 3

2

1

4

2 3 1 2
xx x x x x x

3

2

2

2

1 2

2

3 2

2�    
(23)

This polynomial contains 80 terms, unlike the Kolmogorov-Gabor polynomial (15), which 
has 20 terms. That is, using the approach of A.G. Ivakhnenko, the researcher constructs not 
the Kolmogorov-Gabor polynomial, but a new polynomial with a different structure, which has 
four times more terms. A.G. Ivakhnenko wrote that under certain conditions "... the coeffi-
cients of non-existent real connections turn out to be zero (or very small)" (Ivakhnenko, 1963). 
However, it turned out that this is not the case: "Testing the classical GMDH (Group Method 
of Data Handling) by solving control tasks with artificially formed initial data shows that its se-
lecting abilities are not high enough: in some examples, arguments not included in the formula 
defining the process were in the list of arguments of the model of the process" (Belov, 2008).

A.G. Ivakhnenko later abandoned the idea of multi-stage estimation of the coefficients of 
the Kolmogorov-Gabor polynomial as a whole and considered another task - the sequential 
complication of models, starting with reference polynomials, and gradually complicating the 
form of the model, approaching the form of the full Kolmogorov-Gabor polynomial, but not 
reaching it. At each stage of complicating the model, its statistical characteristics (for example, 
the variance of the approximation error) are evaluated, which are compared with the same 
characteristics of less complex models. The process of complicating the model stops when the 
measured statistical characteristic ceases to improve. This method was named by him "Group 
Method of Data Handling" (GMDH) and it is used today in solving some practical problems 
(Artemenko, 2016), including in combination with neural networks (Ivakhnenko, 1973; Sve-
tunkov, 2024).

Research has shown that the Kolmogorov-Gabor polynomial in terms of accuracy can ac-
tively compete with neural networks used in economics, especially today with the availability 
of different computational capabilities than fifty years ago (Nikolenko, 2022), but for this, an 
effective method is needed to overcome the "curse of dimensionality". The Ivakhnenko method 
(16) – (22) does not solve this problem.

A simple method for constructing the full Kolmogorov-Gabor polynomial, which overcomes 
the "curse of dimensionality," is outlined below.

Let's consider this method first on the example of the dependence of y on three factors x1, 
x2, and x3 (15), and then make the necessary generalizations.

At the first stage, for example, using the method of least squares, it is necessary to find the 
coefficients of a simple linear model that includes all factors:
y b b x b x b x

� � � � �
0 1 1 2 2 3 3

   (24)
And at the second and last stage, the same least squares method should be used to estimate 

the coefficients of the cubic polynomial, substituting the calculated values into it as a factor 
(24).
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y c c y c y c y   � � � � � � �
0 1 2

2

3

3
( ) ( )    (25)

It’s all. The model is built. If we now substitute (24) into (25), we get:
y c c b b x b x b x c b b x b x b x c b b � � � � � � � � � � �

0 1 0 1 1 2 2 3 3 2 0 1 1 2 2 3 3

2

3 0
( ) ( ) (

11 1 2 2 3 3

3x b x b x� � )    
(26)

Opening the brackets and grouping, we obtain complete correspondence of the structure of 
the polynomial (26) to the structure of the Kolmogorov-Gabor polynomial (15) - it contains 
exactly 20 terms.

Now we can find the correspondence of coefficients (25) - (26) to the coefficients of the 
Kolmogorov-Gabor polynomial (15):

a c c b c b c b
a c b c b b c c b b

a

0 0 1 0 2 0

2

3 0

3

1 1 1 2 0 1 2 3 0

2

1

19

2 2

2

� � � �

� � �

�

,

,

...

cc b b b
3 1 2 3
( )� �    (27)

It should be noted that with such a simple method, we will not obtain the true values of the 
polynomial coefficients. The least squares estimate (LSE) applied directly to the Kolmogor-
ov-Gabor polynomial (15) and the LSE applied to the proposed method of stepwise decom-
position (25) - (26) will differ from each other. This is easily understood because, in the first 
case, 20 independent coefficients are estimated, while in the second case, 8 coefficients are 
estimated, of which only 4 coefficients of the linear multifactor model (25) are completely in-
dependent of the other coefficients.

Therefore, a simplified model of the Kolmogorov-Gabor polynomial is obtained, which we 
will call the "elementary form" of the Kolmogorov-Gabor polynomial.

Is it possible to obtain a more accurate representation of the Kolmogorov-Gabor polynomi-
al? Yes, it is.

In relation to the task at hand, the process of constructing such a more complete representa-
tion will consist of three stages.

At the first stage, a multifactor linear model (24) is constructed.
At the second stage, a multifactor nonlinear quadratic model is constructed: 

y c c x c x c x

�� � � � �
0 1 1

2

2 2

2

3 3

2       (28)
And based on these two models, the coefficients of the final model are estimated:

y d d y d y d y d y   � � � � � � � � ��
0 1 2

2

3

3

4
( ) ( )    (29)

After substituting (24) and (28) into (29) and grouping the terms, the image of the Kolmogo-
rov-Gabor polynomial is obtained again, in the construction of which not 4, but 8 independent 
coefficients (24) and (28) are estimated, as well as five dependent coefficients (29). Of course, 
the new image will be somewhat more accurate than the elementary image (26), and at the 
same time, the estimation of its parameters is still simpler than the direct estimation of the co-
efficients of the Kolmogorov-Gabor polynomial (15). The feasibility of using the elementary or 
full images of the Kolmogorov-Gabor polynomial is determined by practical needs.

This simple method of constructing images of the Kolmogorov-Gabor polynomial can be 
extended to the case of any number of variables xi, i=1, 2, …, m. For the elementary image of 
the Kolmogorov-Gabor polynomial of degree m we obtain:

y b b x b x b x

y c c y c y c y

m m

m



   

� � � � � �

� � � � � � � �
0 1 1 2 2

0 1 2

2

... ,

( ) ... ( )
mm

�

�
�

��    (30)
As can be seen, it is necessary to estimate step by step (m+1) unknown coefficients, which 
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is a routine task. Therefore, the "curse of dimensionality," which A.G. Ivakhnenko repeatedly 
pointed out, is completely overcome, and with the help of the indicated method, an elementary 
image of the Kolmogorov-Gabor polynomial can be constructed for any m.

The system (30) can be represented in a more compact mathematical form:

y b b a a xj i i
i

m
j

j

m
 � � �

��
��0 0

11

( )
   (31)

If a researcher is interested in a more accurate approximation to the Kolmogorov-Gabor 
polynomial, then its full image at xi, i=1, 2, …, m will be formed like this:

y b b x b x b x

y c c x c x c x

m m

m m





� � � � � �

�� � � � � �

0 1 1 2 2

0 1 1

2

2 2

2 2

... ,

... ,

....

...

( )

y w w x w x w x

y z z y z y

m m m
m m

m


  

� � � �� � � � �

� � � � �

1

0 1 1

1

2 2

1 1

0 1 2

2 �� � � � � �

�

�

�
�
�
�

�

�
�
�
�

�

�

�
... ( ) ...z y z y z ym

m

m

m

m

2

2

1

1
  

   (32)
Research conducted on numerous hypothetical and real examples confirms the conclusion 

that the elementary image of the Kolmogorov-Gabor polynomial models various nonlinear 
processes only slightly worse than the full image of this polynomial. Since the Kolmogorov-Ga-
bor polynomial is suitable for describing dependencies with weak nonlinearity (Ruofan, 2022), 
which most of the nonlinear multifactor economic processes are, the elementary image can be 
used as the primary model for describing economic nonlinear dependencies.

A.G. Ivakhnenko, having defined the Kolmogorov-Gabor polynomial as a certain limit, 
believed that there is no particular sense in reaching it, since the partial polynomials (the first 
parts of the Kolmogorov-Gabor polynomial) can cope with the task of modeling nonlinearity 
quite successfully and there is no need to "multiply entities beyond necessity." To find a model 
of optimal complexity, he proposed the "Group Method of Data Handling" (GMDH), which 
involves the sequential complication of the model, following the structure of the Kolmogor-
ov-Gabor polynomial for this set of variables.

It is quite possible that the elementary image of the Kolmogorov-Gabor polynomial may 
also be excessively complex for the modeled object, and therefore it also makes sense to find 
a polynomial of optimal complexity through the sequential use of partial elementary images, 
starting with the simplest linear image.

For this, the first equation of system (30) is initially constructed - a multifactor linear model, 
which is considered as a partial image of the first-degree polynomial. The coefficients found for 
this model are the basis for calculating the variance σ1

2 .
Then, the coefficients of the partial image of the second-degree Kolmogorov-Gabor polyno-

mial are estimated, which has the form:
y c c y c y

2 1 102 12 22

2� � �� � �    (33)
For it, the variance σ 2

2  is also calculated. 
If � �

1

2

2

2� , then complicating the polynomial is pointless, and a simple linear multifactor 
model should be used for modeling. However, if this condition is not met and a reduction in 
variance is observed, the process of complicating the polynomial image continues, and a partial 
image of the third-degree polynomial is constructed:
y c c y c y A y

3 1 1 103 13 23

2

33

3� � � �� � � �    (34)
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and its variance σ 3

2
 is estimated. It is compared with the previous variance σ 2

2 .
If the condition � �

2

2

3

2�  is satisfied again then the model becomes more complicated until 
a complete elementary image of the Kolmo-Gorov-Gabor polynomial is constructed:

y c c y c y c ym m m m mm
m� � � �� � � � �

0 1 2

2

1 1 1
...    (35)

with dispersion σm
2 .

Results and Discussion
Let's demonstrate with an example how this procedure can be used to select the optimal 

image of the Kolmogorov-Gabor polynomial. Suppose that for some research purposes, it be-
came necessary to model the dependence of the number of divorces in the Russian Federation 
from 1999 to 2022 based on five factors: population size, birth rate, GDP per capita, cost of 
one square meter of housing, as well as the number of marriages and divorces. These data can 
be taken from the open statistics of the Russian Federation and are not provided here to save 
space.

Since a nonlinear dependence of one indicator on six is being modeled, the full Kolmogor-
ov-Gabor polynomial that could be constructed from these data should contain 954 coefficients 
that need to be estimated from the available statistical data. Constructing such a polynomial is 
a complex task. However, constructing an elementary image of this polynomial is a simple task. 
Let's find the partial image of the Kolmogorov-Gabor polynomial of optimal complexity using 
the procedure described above.

The linear multifactor model of this dependence has the maximum variance of all, which 
we will take as 100%. How the variance of the approximation error of this dependence changes 
with the complication of the partial images of the Kolmogorov-Gabor polynomial is shown in 
Table 2.

Table 2. Change in the variance of the approximation error with a change in the 
complexity of the elementary image of the Kolmogorov-Gabor polynomial
View of the elementary image of the 

Kolmogorov-Gabor polynomial
Approximation error variance, % of maximum variance

Particular elementary image of a polynomial of a first degree 100,00

Particular elementary image of a 
polynomial of a second degree

98,78

Particular elementary image of a 
polynomial of a third degree

95,62

Particular elementary image of a 
polynomial of ta fourth degree

82,07

Particular elementary image of a polynomial of a fifth degree 72,83

Elementary image of a polynomial 72,84

The model of optimal complexity for the considered example is a partial elementary image of 
a fifth-degree polynomial. In the artificial neuron (4), the first stage involves a linear convolu-
tion of the input variables into a single parameter s, which is then transformed into the output 
y through the transfer function f(s) at the second stage.

In the elementary image of the polynomial (31), the first stage also involves a linear convo-
lution of the same input variables into the calculated value y1. However, here, unlike the neuron 
model, the first adjustment of the image occurs when the function of the discrepancy between 
the result of the linear convolution and the actual value y is minimized. The second stage in-
volves "fine-tuning" the image in the form of a simple power series.

The strength of neural networks is determined by the fact that its neurons are interconnected 
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according to the principle: the output from one neuron simultaneously becomes the input to 
the next neuron (or several subsequent neurons). The number of neurons is determined by the 
researcher, and by varying them, the researcher can complicate the network until it begins to 
describe the modeled dependence between input and output in the best way.

Elementary images of the polynomial can also be combined into a certain network when the 
output from one elementary image of the polynomial simultaneously becomes the input to the 
next elementary image of another polynomial (or several subsequent elementary images of pol-
ynomials). Then a network of polynomials is formed, which describes the dependence between 
input and output data differently and with different accuracy than a neural network. Let's call 
such a network polynomial.

It is important to note one very important difference between the polynomial network and 
the neural network. In the neuron model, only the form of the transfer function f(s) can change. 
It can be logistic, linear, piecewise-linear, or hyperbolic tangent. Other types of transfer func-
tions in the neuron are rare and can be called exotic. But all these transfer functions model 
the same type of sigmoidal nonlinear transformation: linear and piecewise-linear functions 
somewhat worse, logistic and hyperbolic tangent better. Replacing the type of transfer function 
during the training process is impossible – the type of transfer function determines the mathe-
matical algorithms for training the network.

In the model of the elementary image of the polynomial, the fine-tuning function does not 
necessarily have to represent the full elementary image of the Kolmogorov-Gabor polynomial. 
These can be partial elementary images, ranging from a simple linear to a full elementary im-
age of the polynomial. When training such a network, you can change these very fine-tuning 
functions – complicating them from simple to full or vice versa – simplifying them from full 
to simple. Thus, polynomial networks acquire an additional training tool without changing the 
network structure.

What should we expect from the new polynomial network compared to neural networks? 
Since the computational power of an artificial neuron is significantly lower than the computa-
tional power of the elementary image of the polynomial, more accurate modeling results can be 
expected from the polynomial network.

Let's confirm this statement with a simple example. Let's build a neural network and a pol-
ynomial network based on data from 1990 to 2022 about the GDP of the United Kingdom (y) 
depending on the gross capital accumulation (x

1), the size of the economically active population 
(x2), expenditures on scientific research and development (x3), and the size of the UK's GDP 
for the previous period (x4).

Since the influence of the first three factors on the indicator is approximately the same, and 
the influence of the GDP of the previous period on the current value is somewhat different, 
let's build a neural network and a polynomial network in such a way.

Fig. 1. Graphical model of neural network and polynomial network
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