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Abstract. The aim of the study is to explore the principles of Bayesian optimization and 
its potential for solving complex problems, including economic ones. This article presents the 
main aspects of Bayesian optimization such as selection of a priori distribution, estimation 
of posterior distribution and selection of optimal model parameters. An example of applying 
Bayesian optimization to find hyperparameters using the Python programming language is 
presented. Bayesian optimization algorithms and their application to improve machine learning 
models were studied. The use of Bayesian optimization algorithm for finding hyperparameters 
can be useful in the future for optimizing various machine learning models such as neural 
networks, SVM and others.
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Аннотация. Цель исследования заключается в изучении принципов байесовского под-
хода в различных областях, а также подробное изучение байесовской оптимизации и ее 
возможностей для решения сложных задач, в том числе, экономических. В данной работе 
представлены основные аспекты байесовской оптимизации, такие как выбор априорного 
распределения, оценка апостериорного распределения и выбор оптимальных параметров 
модели. Приведен пример применения байесовской оптимизации для нахождения гипер-
параметров с помощью языка программирования Python. Были изучены алгоритмы бай-
есовской оптимизации и их применение для улучшения моделей машинного обучения. 
Использование алгоритма байесовской оптимизации для нахождения гиперпараметров 
может быть полезным в будущем для оптимизации различных моделей машинного обу-
чения, таких как нейронные сети, SVM и другие.
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Introduction
Bayesian optimization is a current and important area in the field of machine learning 

and statistics. It is based on the application of Bayes formula to determine the optimal model 
parameters given a priori knowledge and observed data. This scientific article studies the prin-
ciples of Bayesian optimization, its application in various machine learning problems and the 
potential for improving existing methods.

The Bayesian approach allows us to account for uncertainty and a priori knowledge about 
model parameters, which makes it particularly useful for analyzing small data and solving 
complex problems. At the same time, Bayesian optimization has a theoretical underpinning 
and allows us to give the model parameters a meaningful interpretation. The study of Bayesian 
optimization is necessary and meaningful because this method can solve complex function op-
timization problems, considering the noise in the data and the cost of estimating the function. 
The study of Bayesian optimization can lead to the development of new methods and algo-
rithms that can be applied to solve practical problems in various fields. In addition, Bayesian 
optimization can be used to select reasonable information that determines the whole modeling 
process in econometrics. Thus, the study of Bayesian optimization has great significance for 
various fields of science and practice.
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Bayesian methods of decision making in economics consider the application of Bayesian 
optimization for decision making in the activities of individual economic entities. Any organi-
zation operates in the economy under conditions of uncertainty, which requires an increase in 
the accuracy of estimates when making economic decisions, since the financial results of the 
organization depend on it. Application of Bayesian optimization allows to increase the proba-
bility of making rational economic decisions.

Materials and Methods
Bayesian methods are statistical methods based on Bayes' theorem, which allows updating 

probabilistic estimates of events based on new data. These methods have been widely used in 
various fields including economics, medicine, genetics, speech recognition, space exploration, 
insurance, and others. They can be useful for parameter estimation, data prediction, model 
comparison, decision making under uncertainty, and many other tasks.

Bayesian theory and methods are named after Thomas Bayes (1702-1761), an English math-
ematician and clergyman who was the first to propose the use of Bayes' theorem to adjust 
beliefs based on updated data. His work An Essay towards solving a Problem in the Doctrine 
of Chances was published in 1763, two years after the author's death. However, methods using 
Bayes' theorem became widespread only towards the end of the 20th century, when computa-
tionally intensive calculations became possible with the development of information technology.

The principle of Bayesian methods is to use a priori knowledge of the model parameters to 
obtain posterior distributions of the parameters after taking into account new data. This allows 
uncertainty and prior experience to be taken into account when making decisions. Bayesian 
methods also allow models to be updated based on new data, making them flexible and adaptive.

Bayesian methods have found applications in medical diagnosis, image modeling, genetics, 
speech recognition, economics, space exploration, insurance, and other fields. They are used 
to estimate parameters, predict data, compare models, make decisions under uncertainty, and 
establish causal relationships.

Bayesian optimization in economics can be applied in different contexts to solve a variety 
of problems:

– Portfolio optimization:
Bayesian optimization can be used to find the optimal allocation of assets in a portfolio in 

order to maximize returns or minimize risk. The model can take into account various factors 
such as expected returns, volatility, and correlations between different assets (Laumanns, 2002).

– Pricing:
In business, Bayesian optimization can help in determining the optimal price of a product 

or service. The model can take into account data on market trends, consumer preferences, and 
competitive factors.

– Marketing campaigns:
When planning marketing campaigns, Bayesian optimization can be used to determine the 

optimal budget, timing, and distribution channels for advertising. This can help maximize the 
expected effect of an advertising campaign.

– Inventory management:
For businesses that sell goods, Bayesian optimization can be useful in inventory manage-

ment. The model can help optimize inventory levels with respect to demand, delivery time and 
storage costs. 

– Business Process Optimization:
Bayesian optimization can be used to optimize business processes such as manufacturing, 

logistics or human resource management. The model can suggest optimal parameters to im-
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prove efficiency and reduce costs.
– Financial planning:
In financial planning, Bayesian optimization can help determine the optimal budget alloca-

tion between different projects or business lines.
– Risk Analysis:
A Bayesian optimization model can be used to analyze risks and select optimal risk manage-

ment strategies under uncertainty.
However, it is important to note that successful application of Bayesian optimization in eco-

nomics requires a good understanding of the context of the problem, proper choice of model 
parameters and careful interpretation of the results. Bayesian methods are a powerful tool to 
incorporate uncertainty and prior experience into decision making, making them an important 
tool in various fields of knowledge, including economics.

Bayesian optimization is a method that combines probabilistic models with optimization 
techniques to efficiently find optimal hyperparameters. Hyperparameters are parameters that 
are used to control the learning process, as opposed to model parameters that are tuned dur-
ing training. Bayesian optimization allows us to select the next point to be estimated using the 
model of the model performance evaluation function. Bayesian optimization can be used to 
optimize hyperparameters in a variety of domains including machine learning, deep learning, 
natural language processing, and others. It can be particularly useful in tasks where model 
performance function estimation is expensive, such as in tasks with large amounts of data or 
complex models (Fujimoto, 2023).

The advantages of Bayesian optimization include efficiency and the ability to work with a 
black box, that is, a function that has no analytical expression. It can also be used to optimize 
multiple hyperparameters simultaneously. Disadvantages include the need to select an appro-
priate model of the model performance evaluation function and computational complexity 
(Downey, 2018).

Examples of problems in which Bayesian optimization can be useful include optimization 
of hyperparameters of neural networks, selection of optimal parameters for machine learning 
algorithms, optimization of parameters in optimization problems, and others. Bayesian optimi-
zation is a powerful tool for optimizing hyperparameters in various domains. It can efficiently 
find the optimal values of hyperparameters using probabilistic models and optimization meth-
ods. However, the selection of a suitable model of the model performance evaluation function 
and computational complexity can be problems that need to be considered when using this 
method (Smirnova, 2022).

Bayesian optimization uses Gaussian processes to model the unknown function to be op-
timized. A Gaussian process is a probability distribution over functions that is updated based 
on new data. Bayesian optimization adaptively selects the next point to evaluate the function, 
which reduces the number of evaluation operations. Bayes formula is the basis of Bayesian sta-
tistics and is used to calculate the posterior probability based on a priori probability and new 
data. The Bayes formula is as follows:

P A B P A P B A
P B

( | )
( ) ( | )

( )
=

                                        (1)
where P(A|B) is the posterior probability, P(B|A) is the likelihood (probability of occurrence 

of event B given event A), P(A) is the a priori probability (probability of occurrence of event 
A), and P(B) is the full probability (probability of occurrence of event B).

In Bayesian optimization, Bayes formula is used to calculate the posterior probability of the 
distribution of functions based on observed data. The posterior distribution of functions is the 
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basis for selecting the next point for function evaluation. The choice of the next point is based on 
which point maximizes the expected improvement of the function. The expected improvement 
of the function is calculated based on the posterior distribution of functions and the a priori 
distribution of hyperparameters (Cuesta Ramirez, 2022).

A Gaussian process is a stochastic process such that every finite collection of random var-
iables has a multivariate normal distribution, that is, every finite linear combination of these 
random variables has a normal distribution.

Gaussian processes can be used to model an unknown function and can be used in Bayesian 
optimization to build a model of the model performance evaluation function of the model. The 
basic properties of Gaussian processes can be defined through the covariance function. Some of 
these properties include stationarity, isotropy, smoothness and periodicity of the process. If the 
process is stationary, then the covariance function depends only on the difference between two 
points (Galuzzi, 2020).

Advantages of Gaussian processes include the ability to work with a black box, i.e., a function 
that has no analytical expression, and the ability to be used in Bayesian optimization.  Dis-
advantages include the need to select an appropriate model of the function to evaluate model 
performance and computational complexity. Examples of tasks in which Gaussian processes 
may be useful include network traffic modeling, statistical modeling, parameter optimization in 
optimization problems, and others (Pico-Valencia, 2021).

Gaussian processes are a powerful tool for modeling unknown function and optimization in 
various domains. Gaussian process and Bayesian optimization are closely related. Bayesian opti-
mization uses Gaussian processes to model the unknown function to be optimized. A Gaussian 
process is used to model the unknown function to be optimized and is a probabilistic model 
that describes the distribution of function values at different points. Bayesian optimization uses 
Gaussian processes to estimate the unknown function and select the next point to be estimated. 
The Gaussian process allows for uncertainty in the data and adaptively selects the next point to 
estimate the function, thus reducing the number of estimation operations.

The Bayesian optimization algorithm consists of two main parts:
1. Probabilistic function model: Bayesian optimization starts with an a priori distribution over 

the function to be optimized, which reflects the uncertainty about the function under study. 
With each new observation of the function, the a priori distribution is updated and a posterior 
distribution over the possible functions is obtained.

2. Selecting the next point to estimate: based on the posterior distribution, the next point to 
estimate the function is selected. 

To use Bayesian optimization, the following steps should be followed:
1. Define the function to be optimized;
2. Select an a priori distribution for the function;
3. Evaluate the function at the initial points;
4. Update the a priori distribution with new observations and obtain the posterior distribution;
5. Select the next point to estimate based on the posterior distribution;
6. Repeat steps 4-5 until a stopping criterion (e.g., a given number of iterations or conver-

gence) is reached.
Thus the Bayesian optimization algorithm solves the following problems (Feliot, 2017):
1. Optimization of complex functions: Bayesian optimization allows to find the maximum of 

functions with unknown structure, for example, when selecting hyperparameters for machine 
learning models;

2. Accounting for the cost of function estimation: in some cases, function estimation can be 
expensive (e.g., training a neural network). Bayesian optimization adaptively selects the next 
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point to be estimated given the information from previous iterations, thus reducing the number 
of estimation operations;

3. Noise control: the function may return different values for the same set of parameters due 
to noise in the data. Bayesian optimization accounts for this noise and allows finding optimal 
parameters given this uncertainty.

4. Balance between exploration and exploitation: the Bayesian optimization algorithm takes 
into account both the already known values of the function and the uncertainty in the unex-
plored regions of the parameter space, which allows more efficient exploration of the parameter 
space and finding optimal values (Garrido-Merchбn, 2020).

Bayesian optimization can be relevant for the following economic problems:
1. Decision Making by Individual Economic Entities: Bayesian Methods of Decision Mak-

ing in Economics examines the application of Bayesian methods of decision making to the 
activities of individual economic actors

2. Monetary policy analysis: Bayesian vector autoregression model can be used to estimate 
the impact of various factors on the economy such as monetary policy, external shocks and 
other variables, which allows us to obtain robust estimates for models with a large number of 
variables on samples of limited size (Sheikh, 2022).

3. Estimating the impact of factors on the economy: a Bayesian approach can be used to 
estimate the interdependence of household income inequality and economic growth rates.

Thus, Bayesian optimization can be useful for decision making by individual economic 
actors, analyzing monetary policy and assessing the impact of various factors on the economy 
(Pozhidaeva, 2023).

What is more, Bayesian methods can help in decision-making when there is uncertainty in 
the data or when it is necessary to take into account previous knowledge and experience. For 
example, Bayesian methods can be used to predict future trends in the market, to determine 
the optimal price of a product or service, and to assess risk and make decisions in investment 
activities.

Results and Discussion
Bayesian optimization in the Python programming language in the Microsoft Visual Studio 

Code environment. 
One type of problem often faced by scientists in both academia and industry is the optimi-

zation of black-box functions that are expensive to evaluate. 
Black box functionality is a term used to refer to a system whose internal structure and 

mechanism of operation are very complex, unknown or unimportant within the scope of a giv-
en task. In the context of software testing, black box means that the tester does not necessarily 
know the internal structure of the program or system, but tests its functionality based on input 
and output data. This testing method is used to verify that the software performs all stated 
functions and customer requirements in full according to the documentation (Bishop, 2006).

In cybernetics, systems engineering, and physics, a black box is a system that is viewed as 
having some "input" for inputting information and an "output" for displaying the results of 
operation, with the processes occurring during the operation of the system unknown to the 
observer. The black box approach developed in the exact sciences in the 1920s and 1940s and 
was borrowed by other sciences, including behavioral psychology.

Thus, a black box is a system whose internal design and operating mechanism are complex, 
unknown, or unimportant to the task at hand, and is used in a variety of fields including soft-
ware testing, aviation, and automatic control theory. 

This simplifies the programming and data processing process because the programmer can 
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use a black-box function without having to know all the details of its implementation. Instead, 
he can focus on what input data he needs to provide and what results he expects to get (Shar-
ma, 2021).

However, using a black box function can have disadvantages. For example, if the function 
does not work correctly, it may be difficult for the programmer to determine the cause of the 
error or to correct it. Also, if the function is not well documented, it may be difficult to under-
stand exactly what input data and what output data it expects.

The concept of a black box expensive to evaluate means that it costs a lot of money or re-
sources to perform a function or operation and its inner workings cannot be understood. A good 
example of a black box function expensive to evaluate is the hyperparameter optimization of a 
deep neural network. Each iteration of training can take up to several days, and it is impossible 
to analyze in advance the values of hyperparameters that will lead to the best performance of 
the model (Subasi, 2020).

It is possible to perform a cross-grid search of all possible hyperparameter values, but with 
so many training iterations to be repeated, this would result in a huge computational cost. A 
more efficient method is needed to find the best set of hyperparameters using the least number 
of iterations. Bayesian optimization can be used for this task (Gaudrie, 2020).

Bayesian optimization for the black box function in this case has 2 components (Pandita, 
2020):

1. The black box function to be optimized is: f(x). We need to find a value of 'x' that globally 
optimizes f(x). This is a probabilistic model of the function, it is also sometimes called objective 
function, objective function or loss function. In the general case, we only have knowledge of 
the inputs and outputs of f(x) (Morice-Atkinson, 2018).

2. An acquisition function: a(x), which is used to generate new values of x to be evaluated 
with f(x). a(x) internally relies on a Gaussian process model N(X, y) to generate new values of 
x.

The optimization process itself is as follows:
1. Definition of black box function f(x), acquisition function a(x) and search space of pa-

rameter 'x'.
2. Generating several initial values of 'x' randomly and measuring the corresponding results 

of f(x).
3. Setting up a Gaussian process model N(X, y) on X = x and y = f(x). 
4. The acquisition function a(x) then uses N(X, y) to generate new values of 'x' as follows. 

The model N(X, y) predicts changes in f(x) as a function of 'x'. The value of 'x' that results in 
the largest predicted value in N(X, y) is then offered as the next sample 'x' to estimate f(x).

5. Steps 3 and 4 should be repeated until the value of 'x' that leads to the global optimum of 
f(x) is obtained. At the same time, all historical values of 'x' and f(x) should be used to train the 
Gaussian process model N(X, y) in the next iteration - as the number of data points increases, 
N(X, y) becomes better at predicting the optimum of f(x).

This experiment uses the bayes_opt library to find the hyperparameter C of the SVC model 
trained on sklearn breast cancer data.

Support Vector Machine (SVM) is a powerful machine learning algorithm used for classifi-
cation and regression tasks. Within the classification task, SVM is based on the idea of finding 
an optimal separating hyperplane in the feature space that maximizes the gap between classes 
of data.

Support Vector Classifier (SVC) model is one of the variations of SVM for classification task. 
It works by finding an optimal hyperplane that separates the training data into two classes. The 
optimal hyperplane is chosen to maximize the distance (gap) between the closest points of each 
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class, which are called support vectors (Lyu, 2018).
The hyperplane in SVC is defined by a set of weights (weights) and bias (bias), and training 

the model consists of tuning these parameters based on the training sample. However, it is 
important to note that in the case of nonlinear data, SVC can use so-called kernel functions, 
which allow the model to build nonlinear separating hyperplanes in higher dimensional space. 
The SVC model can also be used to solve the one-vs-all multiclass classification problem. It 
shows good performance for medium to large training sample sizes, although careful tuning of 
hyperparameters may be required to achieve optimal results. The overall performance of the 
SVC method and SVM in general makes it a popular choice for classification tasks in various 
fields such as computer vision, bioinformatics, financial analytics, and others (Popovic, 2019).

The hyperparameter C in the Support Vector Classification (SVC) model is a regularization 
parameter that controls the balance between maximizing the width of the separating band and 
minimizing classification errors. The value of C determines how much we want our model to 
be adapted to the noise in the data. If the value of C is very small, then the model will be more 
flexible and will have a larger error on the training data but a smaller error on the test data. If 
the value of C is very large, the model will be less flexible and will have smaller error on the 
training data but larger error on the test data. The value of C should be chosen optimally for 
the particular classification task (Nguyen, 2018).

The components of the optimizer are:
1. The black box function f(x) is the ROC AUC score that we want to maximize to get the 

best performing model.
2. The acquisition function a(x) is used as the upper confidence bound ("ucb") function, 

which is of the form: a = mean + kappa * std. Both mean and std are outputs from a Gaussian 
process model N(X, y). kappa is a hyperparameter of the optimizer that balances exploration 
and exploitation when searching for x. 

The out-of-the-box Python code to perform the above optimization steps is as follows.

Fig. 1. Bayesian optimization of the hyperparameter
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From the above acquired results, the optimizer was able to determine that using a hyperpa-
rameter value of C = 8.432 results in the best model performance.

Conclusion
Thus, how Bayesian optimization works was studied and how it was used to find hyperpa-

rameters of a machine learning model. For small datasets or simple models, the speedup in 
finding hyperparameters may be negligible compared to grid search. However, for very large 
datasets or deep neural networks, it may not be economically feasible to test every sample on 
a grid, and the use of Bayesian optimization will improve the efficiency of the hyperparameter 
search process.

Using Bayesian optimization code to find hyperparameters of black-box functions, we can 
apply the knowledge gained in the following directions:

1. Machine learning: optimizing the hyperparameters of machine learning models such as 
neural networks, decision trees and support vector method to improve their performance and 
accuracy.

2. Financial research: applying Bayesian optimization to tune the parameters of econometric 
models used in financial analysis and forecasting.

3. Industrial optimization: using Bayesian optimization to determine the optimal parameters 
of processes and systems in various industries.

4. Tuning classification algorithms: determining the significance of hyperparameters and 
tuning classifiers with an extensive set of hyperparameters for better validation of results.

5. Comparison and analysis of results: evaluating statistical results using criteria such as the 
Mann-Whitney criterion to compare the performance of classical and extended Bayesian opti-
mization.

Bayesian optimization of regression model hyperparameters used in programming can be 

Fig. 2. Result of running the Python code

Running the above Python code produces the following output.
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