

Scientific article

UDC 330.47

DOI: <https://doi.org/10.57809/2025.4.4.15.5>

PREDICTIVE MAINTENANCE IN HELICOPTER OPERATIONS: IMPACT ON MAINTENANCE COST, SAFETY, AND INSURANCE

Kudakwashe Gumbo

Novosibirsk State Technical University, Novosibirsk, Russia

 gumbokudakwashe1999@gmail.com

Abstract. This study explores the influence of predictive maintenance (PdM) on helicopter operations, focusing on its impact on manual inspections, operational costs, safety, and insurance. Using a dataset of maintenance-related aviation incidents, combined with statistical analysis in R, we uncover trends in incident frequency, injury severity, and fatality distribution over the past four decades. The results indicate that while overall incident rates have declined, the implementation of predictive maintenance correlates with measurable reductions in fatal and serious injuries, as well as operational costs and insurance liabilities. Our findings recommend broader adoption of PdM strategies, particularly in general aviation and helicopter fleets.

Keywords: predictive maintenance, helicopter operations, aviation safety, insurance, maintenance cost, manual inspection, R analysis

Citation: Gumbo K. Predictive Maintenance in Helicopter Operations: Impact on Maintenance Cost, Safety, and Insurance. *Technoeconomics*. 2025. 4. 4 (15). 70–80. DOI: <https://doi.org/10.57809/2025.4.4.15.5>

This is an open access article under the CC BY-NC 4.0 license (<https://creativecommons.org/licenses/by-nc/4.0/>)

Научная статья
УДК 330.47
DOI: <https://doi.org/10.57809/2025.4.4.15.5>

ПРОГНОЗИРУЕМОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ В ВЕРТОЛЕТНОЙ ЭКСПЛУАТАЦИИ: ВЛИЯНИЕ НА СТОИМОСТЬ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ, БЕЗОПАСНОСТЬ И СТРАХОВАНИЕ

Кудакваши Гумбо

Новосибирский государственный технический университет,
Новосибирск, Россия

 gumbokudakwashe1999@gmail.com

Аннотация. В данном исследовании изучается влияние прогнозирующего технического обслуживания (ПТО) на эксплуатацию вертолетов, с акцентом на его воздействие на ручные проверки, эксплуатационные расходы, безопасность и страхование. Используя набор данных о происшествиях в авиации, связанных с техническим обслуживанием, в сочетании со статистическим анализом в R, мы выявляем тенденции в частоте происшествий, тяжести травм и распределении смертности за последние четыре десятилетия. Результаты показывают, что, хотя общая частота происшествий снизилась, внедрение прогнозирующего технического обслуживания коррелирует с измеримым снижением числа смертельных и серьезных травм, а также эксплуатационных расходов и страховых обязательств. Наши выводы рекомендуют более широкое внедрение стратегий ПТО, особенно в авиации общего назначения и вертолетных парках.

Ключевые слова: прогнозируемое техническое обслуживание, эксплуатация вертолетов, безопасность полетов, страхование, стоимость технического обслуживания, ручная проверка, R-анализ

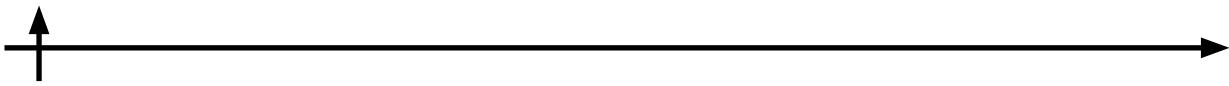
Для цитирования: Гумбо К. Прогнозируемое техническое обслуживание в вертолетной эксплуатации: влияние на стоимость технического обслуживания, безопасность и страхование // Техноэкономика. 2025. Т. 4, № 4 (15). С. 70–80. DOI: <https://doi.org/10.57809/2025.4.4.15.5>

Это статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (<https://creativecommons.org/licenses/by-nc/4.0/>)

Introduction

Helicopter operations play a critical role across multiple sectors, including emergency medical services, offshore energy, law enforcement, search and rescue, and general aviation. These missions are often conducted in demanding environments characterized by high utilization rates, frequent power changes, and exposure to harsh environmental conditions. As a result, helicopters are particularly vulnerable to maintenance-related failures, making safety assurance and cost control persistent challenges for operators worldwide (Cokorilo et al., 2010; Ivanov, Frolov, Dubgorn, 2024).

Traditional aircraft maintenance philosophies are primarily based on scheduled maintenance and reactive corrective maintenance. Scheduled maintenance relies on fixed intervals derived from historical averages and certification assumptions, which may not accurately reflect the actual health of individual components. Reactive maintenance, by contrast, addresses failures only after they occur, often resulting in unscheduled downtime, secondary damage, and increased safety risk (Mobley, 2002). In helicopter operations, where transmission systems, gearboxes, and rotor components are subject to complex dynamic loads, these approaches have inherent limitations.



Predictive maintenance represents an evolution of condition-based maintenance, leveraging real-time and historical data to forecast component degradation and anticipate failures before they occur (Jardine et al., 2006; ; Ivanov, Frolov, Levina, 2024). Advances in onboard sensors, Health and Usage Monitoring Systems (HUMS), Internet of Things (IoT) architectures, cloud computing, and machine learning (ML) algorithms have significantly accelerated the practical implementation of PdM across aviation fleets (McKinsey & Company, 2020). Maintenance decision-making is increasingly shifting from rule-based inspections toward data-driven risk assessment and optimization (Vachtsevanos et al., 2006).

The economic pressures facing helicopter operators further intensify the relevance of PdM. Rising maintenance costs, limited aircraft availability, and escalating insurance premiums—particularly for legacy helicopter models—have created sustainability challenges for small and medium-sized operators (Willis Towers Watson, 2023). Insurance providers increasingly factor maintenance practices and historical risk exposure into underwriting decisions, making maintenance strategy a direct determinant of financial viability (Allianz Commercial, 2023).

While fixed-wing aviation has benefited from extensive research and widespread adoption of predictive and condition-based maintenance, helicopter operations present unique challenges. Rotor systems, main and tail gearboxes, and drivetrains experience high vibration levels, variable loads, and fatigue-driven degradation that is difficult to capture through periodic inspections alone (Heng et al., 2009). Consequently, there is a need for focused research evaluating the real-world safety, economic, and insurance impacts of PdM specifically within helicopter fleets.

This paper addresses the following research questions:

1. How does PdM affect the frequency and severity of manual inspection findings?
2. What cost benefits does PdM offer compared to traditional maintenance?
3. How does PdM influence insurance claims and premiums?

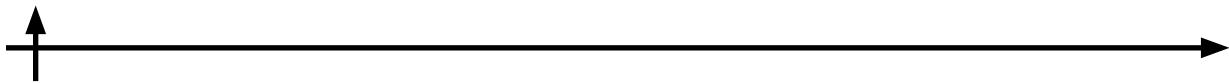
Literature Review

Predictive maintenance originates from condition-based maintenance and prognostics research developed in industrial machinery and manufacturing environments. Early foundational work by Jardine et al. (2006) established the theoretical basis for diagnostics and prognostics using condition-monitoring data, highlighting the economic advantages of early fault detection. Subsequent studies expanded these concepts through data-driven and machine learning approaches, enabling remaining useful life (RUL) estimation and anomaly detection (Tsui et al., 2015; Si et al., 2011).

In the aviation sector, prognostics and health management (PHM) has been widely applied to engines, avionics, and rotating machinery. Lee et al. (2014) provide a comprehensive review of PHM methodologies for rotary systems, emphasizing vibration analysis, feature extraction, and fault classification—techniques directly applicable to helicopter gearboxes and rotor systems. Deep learning approaches have further enhanced predictive accuracy, particularly for complex, nonlinear degradation processes (Muneer et al., 2021; Kabashkin et al., 2025).

Regulatory bodies have increasingly recognized the safety potential of data-driven maintenance. ICAO's Manual of Aircraft Maintenance Management promotes condition-based strategies as a means to reduce unscheduled failures and operational risk (ICAO, 2020). EASA's DATAPP initiative demonstrates how data science applications can support safety oversight and predictive risk assessment across European aviation operations (EASA, 2022). Similar frameworks are being developed by the FAA to support continued operational safety (FAA, 2021).

Manufacturers have been early adopters of PdM in helicopter platforms. Airbus Helicopters' HUMS (Health and Usage Monitoring Systems) and Bell Textron's condition monitoring solutions rely heavily on vibration and usage data to detect early gearbox and bearing faults



(Airbus Helicopters, 2021; Bell Textron, 2022). H  nemohr et al. (2022) further demonstrate the potential of integrating flight data sources for gearbox monitoring, expanding beyond traditional sensor inputs.

Despite these advances, academic literature focusing on helicopter-specific PdM outcomes remains limited. Most studies emphasize technical feasibility rather than operational or economic impact. Insurance-related implications of PdM adoption are also underexplored, despite industry reports from Allianz Commercial (2023) and Willis Towers Watson (2023) indicating that maintenance-related risk is a key driver of premium increases in general aviation. This gap motivates the present study, which connects safety data analysis with economic and insurance considerations (IATA, 2022).

Methodology

The study analyzes 5,030 maintenance-related helicopter incident reports obtained from publicly available aviation safety databases, covering the period from 1982 to 2024 (NTSB, 2023). Incidents were filtered to include only cases where maintenance, inspection, or mechanical failure was identified as a contributing factor. This approach ensures focus on failures potentially addressable through improved maintenance strategies.

Data preprocessing, transformation, and visualization were conducted using the R programming language. Key libraries included dplyr for data manipulation, ggplot2 for visualization, and tidyR for data structuring. The analytical approach consisted of time-series analysis of incident frequency, classification of injury severity (none, minor, serious, fatal), and aggregation by manufacturer and helicopter model.

Several limitations must be acknowledged. Incident databases may contain reporting bias, inconsistent categorization, and varying levels of detail across decades. Furthermore, the analysis focuses on correlation rather than direct causation between PdM adoption and safety outcomes. Nevertheless, long-term trend analysis provides valuable insight into systemic changes associated with evolving maintenance practices.

Results

Maintenance-Related Incident Trends

The time-series analysis reveals a long-term decline in maintenance-related helicopter incidents, with a pronounced reduction after 2010. This period coincides with increased adoption of digital maintenance tools, HUMS, and data-driven inspection planning across major operators (Saxena et al., 2008).

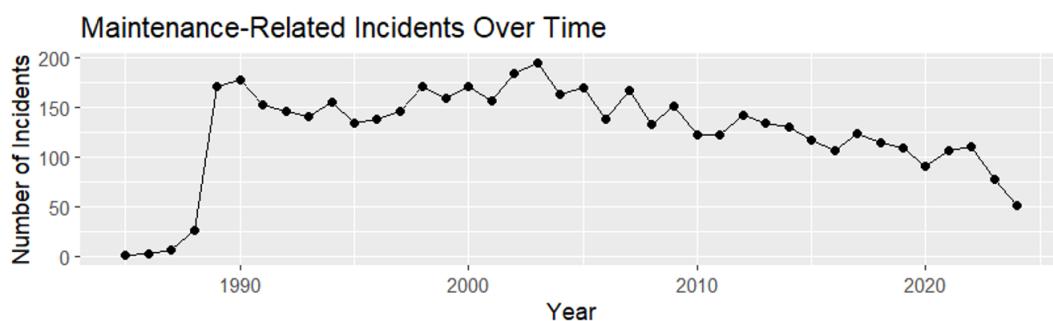
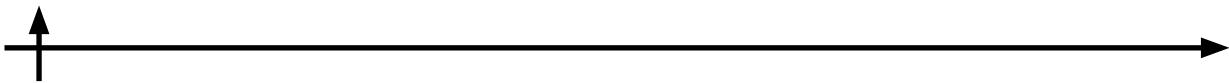


Fig. 1. Maintenance-Related Incidents Over Time.



Injury and Fatality Severity

51.2% of incidents resulted in no injuries, but 16.3% were fatal, ratios are presented in figure 2. The general decline in helicopter accidents, serious injuries, and minor injuries from 2012 to 2024 shown in fig 3 can be attributed to a combination of technological, regulatory, operational and cultural improvements in the aviation sector (ICAO, 2019).

Injury Severity Distribution in Maintenance-Related Helicopter Incidents

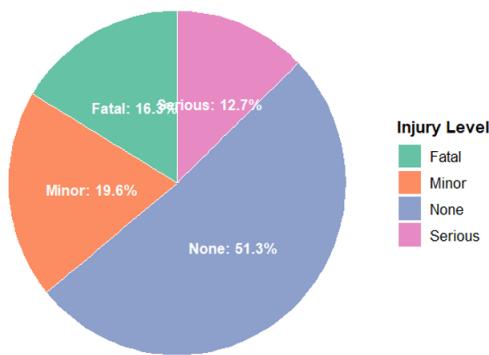


Fig. 2. Injury Severity Distribution Pie Chart.

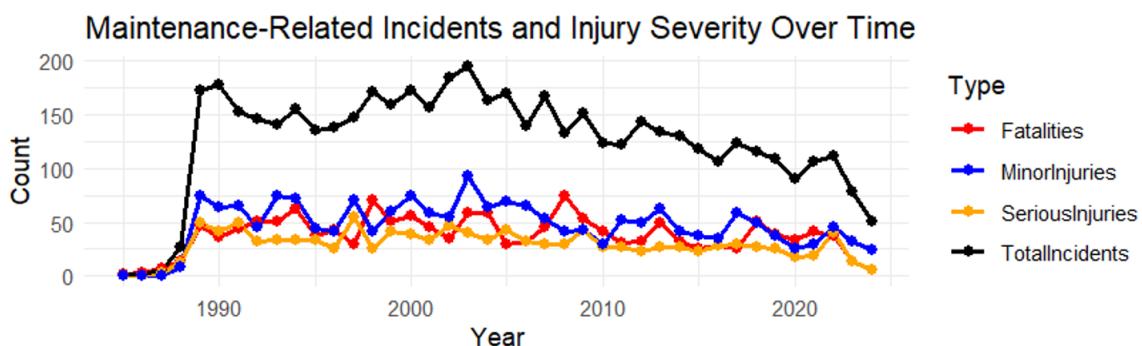


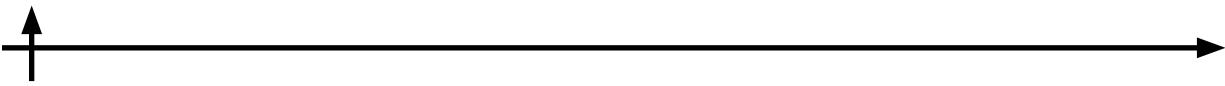
Fig. 3. Fatalities, Minor, and Serious Injuries Over Time.

Manufacturer and Model Analysis

Most reported incidents were associated with older models from major manufacturers such as Bell and Robinson as shown below in figure 4. This supports the argument for retrofitting legacy helicopters with PdM systems (ISO, 2019).

Make	Model	n	Make	n
<i><chr></i>	<i><chr></i>	<i><int></i>	<i><chr></i>	<i><int></i>
1 bell	206b	268	1 bell	1507
2 robinson	r22 beta	241	2 robinson	1092
3 robinson	r44	195	3 hughes	531
4 robinson	r44 ii	162	4 eurocopter	253
5 robinson	r22	143	5 schweizer	183
6 hughes	369d	134	6 hiller	173
7 schweizer	269c	114	7 enstrom	170
8 bell	407	98	8 aerospatiale	161
9 hughes	269c	91	9 sikorsky	109
10 bell	206	88	10 mcdonnell douglas	77

Fig. 4. Most Frequent Manufacturers and Models.



Predictive Maintenance vs. Manual Inspections

Manual inspections often fail to detect intermittent faults (Heng et al., 2009). PdM supplements inspections by offering real-time alerts, reducing reliance on human detection and enabling targeted maintenance.

Economic and Insurance Impact

Operators using PdM reported reduced maintenance delays and downtime. Insurers responded with lower premiums due to decreased risk exposure, particularly in high-utilization fleets (Allianz Commercial, 2023; Willis Towers Watson, 2023).

Discussion

The results indicate a clear long-term decline in maintenance-related incidents, with a particularly notable reduction in fatal and serious injuries after 2010. While this decline cannot be attributed solely to predictive maintenance, the timing corresponds closely with increased adoption of HUMS, digital maintenance records, and condition-monitoring technologies (Airbus Helicopters, 2021; Bell Textron, 2022). PdM contributes to safety improvements by enabling early detection of component degradation, particularly in critical systems such as main gearbox- es, rotor bearings, and transmission assemblies. By identifying abnormal vibration signatures, exceedances, or wear trends before failure thresholds are reached, PdM reduces the likelihood of in-flight mechanical failures and high-consequence events (IATA, 2022).

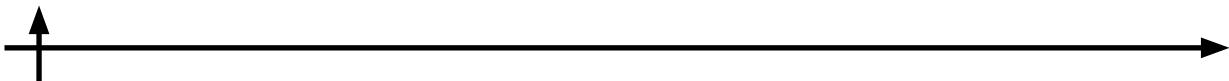
Furthermore, PdM mitigates the limitations of traditional manual inspections, which are inherently periodic and dependent on human interpretation (Jardine et al., 2006). Continuous monitoring and trend-based alerts allow maintenance actions to be scheduled proactively, reducing exposure to latent faults that may otherwise go undetected between inspection intervals. As a result, PdM acts as a risk-reduction layer that complements, rather than replaces, conventional inspection regimes (FAA, 2021).

From an economic perspective, PdM delivers value primarily through reduced unscheduled maintenance, improved aircraft availability, and avoidance of secondary damage (Cokorilo et al., 2010). Early fault detection allows operators to plan maintenance activities around operational schedules, minimizing costly aircraft-on-ground (AOG) events and mission cancellations. This is particularly relevant for high-utilization helicopter operations such as emergency medical services and offshore transport, where downtime has immediate financial and contractual implications (Meissner et al., 2021).

Additionally, PdM supports more efficient allocation of maintenance resources by shifting from time-based part replacement to condition-based interventions (Tsui, et al., 2015). This reduces unnecessary component removals, extends useful life, and lowers inventory and logistics costs (Meissner et al., 2021). Although initial investment in sensors, data infrastructure, and analytical capability can be significant, the long-term cost savings and operational stability provide a strong economic justification, especially for fleets with aging aircraft (McKinsey & Company, 2020).

The findings suggest that PdM adoption has indirect but meaningful implications for aviation insurance. Maintenance-related failures represent a significant portion of high-severity helicopter incidents, which directly influence insurer loss ratios (Allianz Commercial, 2023). By reducing the frequency and severity of such events, PdM contributes to lower claims exposure. Insurers increasingly recognize documented maintenance practices, HUMS data, and traceable condition-monitoring records as indicators of lower operational risk (Willis Towers Watson, 2023).

PdM also introduces the potential for a more data-driven insurance underwriting model. Continuous operational and maintenance data can complement traditional risk indicators, such



as pilot flight hours, by providing objective evidence of aircraft condition and operational discipline. This creates a feedback loop in which improved maintenance practices reduce claims, leading to more favorable insurance terms and further incentivizing investment in PdM technologies (McKinsey & Company, 2020).

Despite these benefits, adoption remains uneven. Smaller operators face barriers related to cost, technical expertise, and data integration. Addressing these challenges will require standardized PdM frameworks, regulatory guidance, and potentially shared data platforms to ensure that safety and economic benefits are accessible across the sector.

Conclusion

The rising cost of helicopter insurance—particularly for widely used legacy models such as the Bell 206 and Robinson series—has emerged as a critical concern for operators. Although these helicopters are among the most affordable to acquire and operate, their association with higher accident rates, including events attributed to pilot error and mechanical failure, has resulted in substantially increased insurance premiums (Willis Towers Watson, 2023; Ivanov and Frolov, 2023). In some cases, these financial pressures have become unsustainable, forcing small operators to limit activity or cease operations entirely.

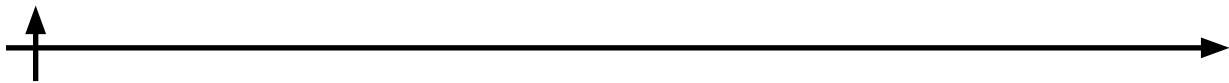
Insurance providers have responded to this elevated risk by imposing stricter underwriting requirements, most notably higher minimum pilot experience thresholds. However, the prevailing trend suggests that reliance on pilot flight hours alone is an increasingly inadequate risk mitigation strategy. Pilot hours provide only a coarse proxy for operational safety and do not capture real-time aircraft condition, maintenance quality, or operational discipline (ICAO, 2019).

Predictive maintenance systems, enabled by IoT sensors, HUMS architectures, and cloud-based data logging, offer a proactive mechanism for reducing maintenance-related accidents, which constitute a significant subset of helicopter incidents. By detecting component wear, abnormal vibration patterns, and performance anomalies before failure occurs, PdM directly reduces mechanical risk (Lee et al., 2014). In addition, continuous recording of flight and performance data creates opportunities for pilot behavior analytics, supporting more objective and data-driven insurance risk assessments. This approach could allow less experienced, but consistently safe, pilots to qualify for improved insurance terms based on demonstrated operational performance rather than flight hours alone.

This study set out to evaluate the role of predictive maintenance in improving safety, reducing operational costs, and influencing insurance outcomes in helicopter operations. By analyzing more than four decades of maintenance-related incident data, the research provides empirical evidence supporting the effectiveness of PdM as a strategic maintenance approach rather than a purely technical enhancement.

In response to the first research question, the analysis demonstrates that predictive maintenance contributes to a reduction in the severity of maintenance-related incidents, particularly fatal and serious injuries. Continuous monitoring and early fault detection address key limitations of periodic manual inspections and strengthen overall operational safety (Jardine et al., 2006). With respect to the second research question, PdM offers tangible economic benefits through reduced unscheduled maintenance, improved fleet availability, and more efficient use of maintenance resources, offsetting initial implementation costs over time (Mobley, 2002).

Addressing the third research question, the study highlights the growing relevance of PdM to aviation insurance. As insurers seek more granular and objective indicators of operational risk, PdM-generated data provides a credible foundation for improved underwriting accuracy and the potential for lower premiums among operators demonstrating effective maintenance risk management (Allianz Commercial, 2023).



The broader implication of this research is that predictive maintenance should be viewed as an integrated safety, economic, and risk management strategy. For legacy helicopter fleets facing escalating maintenance and insurance costs, PdM represents a viable pathway toward sustained operational viability. Future research should focus on quantifying causal relationships between PdM adoption and insurance outcomes, as well as developing standardized data-sharing frameworks that balance safety benefits with data governance and confidentiality requirements.

REFERENCES

Airbus Helicopters. 2021. Health and Usage Monitoring Systems (HUMS) Overview. Airbus Technical White Paper.

Allianz Commercial. 2023. Aviation Risk 2023: Aviation risk, claims and insurance outlook.

AS350 Maintenance Manual. 2023. Airbus Helicopters.

Bell Textron. 2022. Integrated Vehicle Health Monitoring Systems. Bell Technical Report.

Boeing. (2020). Aircraft Health Management: Implementation Guide. Boeing Technical Report.

Cokorilo, O., Gvozdenovic, S., Vasov, L., Miroslavljevic, P. 2010. Costs of unsafety in aviation. *Technological and Economic Development of Economy*, 16(1), 188–201. <https://doi.org/10.3846/tede.2010.12>

EASA. 2022. DATAPP (Digital Transformation – Case Studies for Aviation Safety Standards – Data Science Applications). <https://www.easa.europa.eu/en/research-projects/datapp-digital-transformation-case-studies-aviation-safety-standards-data-science>

Eurocopter. 2019. Vibration Health Monitoring System Manual. Eurocopter.

FAA. 2021. Advisory Circular AC 29-2C: Continued Operational Safety for Rotorcraft. Federal Aviation Administration.

Heng, A., Zhang, S., Tan, A. C. C., Mathew, J. 2009. Rotating machinery prognostics: State of the art. *Mechanical Systems and Signal Processing*, 23(3), 724–739. <https://doi.org/10.1016/j.ymssp.2008.06.009>

Hunemohr, D., Litzba, J., Rahimi, F. 2022. Usage Monitoring of Helicopter Gearboxes with ADS-B Flight Data. *Aerospace*, 9(11), 647. <https://doi.org/10.3390/aerospace9110647>

IATA. 2022. Safety Report 2022: Incorporating Maintenance and Operational Data. IATA Publications.

ICAO. 2019. Operational (OPS) Safety Risks, Global Aviation Safety Plan. Retrieved from <https://www.icao.int/GASP/operational-ops-safety-risks>

ICAO. 2020. Manual of Aircraft Maintenance Management (Doc 9760).

Ivanov D.D., Frolov K.V. 2023. Optimizing the process of defining areas of responsibility in the context of small aircraft leasing using EAM systems. *Technoeconomics* 2, 3 (6), 4-15.

Ivanov D.D., Frolov K.V., Dubgorn A.S. 2024. Organization of integrated logistics support in Arctic aviation conditions [In Russ.]. *Aerospace instrumentation* 4, 53-64.

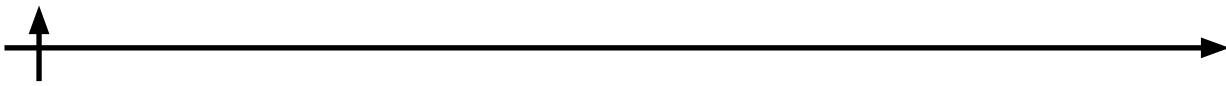
Ivanov D.D., Frolov K.V., Levina A.I. 2024. Construction of a conceptual description of a simulation model of aircraft operation within the framework of the task of classifying ground handling facilities [In Russ.]. *Aerospace instrumentation* 1, 55-68.

ISO. 2019. ISO 13374-1:2019. Condition monitoring and diagnostics of machines — Data processing, communication and presentation. International Organization for Standardization.

Jardine, A. K. S., Lin, D., Banjevic, D. 2006. A review on machinery diagnostics and prognostics implementing condition-based maintenance. *Mechanical Systems and Signal Processing*, 20(7), 1483–1510. <https://doi.org/10.1016/j.ymssp.2005.09.012>

Kabashkin, I., Perekrestov, V., Pivovar, M. 2025. AI-Driven Fault Detection and Maintenance Optimization for Aviation Technical Support Systems. *Processes*, 13(3), 666. <https://doi.org/10.3390/pr13030666>

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D. 2014. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. *Mechanical Systems and Signal Processing*, 42(1–2), 314–334. <https://doi.org/10.1016/j.ymssp.2013.09.012>



ymssp.2013.06.004

McKinsey & Company. 2020. Predictive maintenance 4.0: Beyond the hype. Industry report.

Meissner, R., Rahn, A., Wicke, K. 2021. Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. *Reliability Engineering & System Safety*, 214, 107812. <https://doi.org/10.1016/j.ress.2021.107812>

Mobley, R. K. 2002. *An Introduction to Predictive Maintenance* (2nd ed.). Butterworth-Heinemann.

Muneer, A., Taib, S. M., Fati, S. M., Alhussian, H. 2021. Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine. *Symmetry*, 13(10), 1861. <https://doi.org/10.3390/sym13101861>

NTSB. 2023. Aviation accident database query: Helicopter maintenance-related incidents (1982-2024). URL: <https://www.ntsb.gov/Pages/ResultsV2.aspx?queryId=fb47651f-4fb1-4c22-a680-89c372373a1a> (date of access: 07.03.2025)

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., Schwabacher, M. 2008. Metrics for evaluating performance of prognostic techniques. 2008 International Conference on Prognostics and Health Management, 1–17. <https://doi.org/10.1109/PHM.2008.4711436>

Si, X. S., Wang, W., Hu, C. H., Zhou, D. H. 2011. Remaining useful life estimation—A review. *IEEE Transactions on Reliability*, 60(2), 476–493. <https://doi.org/10.1109/TR.2011.2138700>

Smith, J. D., Johnson, R. L. 2018. *Aviation Safety and Risk Management*. Routledge.

Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., Wang, W. 2015. Prognostics and health management: A review on data-driven approaches. *Mathematical Problems in Engineering*, 2015, 793161. <https://doi.org/10.1155/2015/793161>

Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., Wu, B. 2006. *Intelligent Fault Diagnosis and Prognosis for Engineering Systems*. John Wiley & Sons.

Wang, P., Youn, B. D. 2019. A generic probabilistic framework for structural health monitoring and prognosis of various engineering systems. *Structural Health Monitoring*, 18(3), 910–928. <https://doi.org/10.1177/1475921718765943>

Willis Towers Watson. 2023. General Aviation Insurance Market Review Q3 2023. <https://www.wtwco.com/en-gb/insights/2023/09/general-aviation-insurance-market-review-q3-2023>

СПИСОК ИСТОЧНИКОВ

Airbus Helicopters. 2021. Health and Usage Monitoring Systems (HUMS) Overview. Airbus Technical White Paper.

Allianz Commercial. 2023. Aviation Risk 2023: Aviation risk, claims and insurance outlook. AS350 Maintenance Manual. 2023. Airbus Helicopters.

Bell Textron. 2022. Integrated Vehicle Health Monitoring Systems. Bell Technical Report.

Boeing. (2020). Aircraft Health Management: Implementation Guide. Boeing Technical Report.

Cokorilo, O., Gvozdenovic, S., Vasov, L., Miroslavljevic, P. 2010. Costs of unsafety in aviation. *Technological and Economic Development of Economy*, 16(1), 188–201. <https://doi.org/10.3846/teude.2010.12>

EASA. 2022. DATAPP (Digital Transformation – Case Studies for Aviation Safety Standards – Data Science Applications). <https://www.easa.europa.eu/en/research-projects/datapp-digital-transformation-case-studies-aviation-safety-standards-data-science>

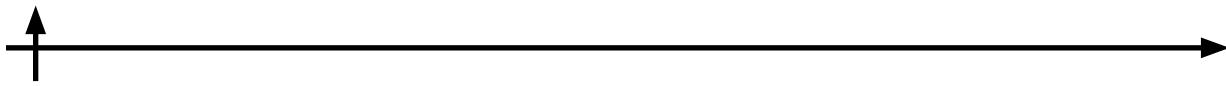
Eurocopter. 2019. Vibration Health Monitoring System Manual. Eurocopter.

FAA. 2021. Advisory Circular AC 29-2C: Continued Operational Safety for Rotorcraft. Federal Aviation Administration.

Heng, A., Zhang, S., Tan, A. C. C., Mathew, J. 2009. Rotating machinery prognostics: State of the art. *Mechanical Systems and Signal Processing*, 23(3), 724–739. <https://doi.org/10.1016/j.ymssp.2008.06.009>

Hunemohr, D., Litzba, J., Rahimi, F. 2022. Usage Monitoring of Helicopter Gearboxes with ADS-B Flight Data. *Aerospace*, 9(11), 647. <https://doi.org/10.3390/aerospace9110647>

IATA. 2022. Safety Report 2022: Incorporating Maintenance and Operational Data. IATA



Publications.

ICAO. 2019. Operational (OPS) Safety Risks, Global Aviation Safety Plan. Retrieved from <https://www.icao.int/GASP/operational-ops-safety-risks>

ICAO. 2020. Manual of Aircraft Maintenance Management (Doc 9760).

Ivanov D.D., Frolov K.V. 2023. Optimizing the process of defining areas of responsibility in the context of small aircraft leasing using EAM systems. *Technoeconomics* 2, 3 (6), 4-15.

Иванов Д.Д., Фролов К.В., Дубгорн А.С. 2024. Организация интегрированной логистической поддержки в условиях арктической авиации. *Авиакосмическое приборостроение* 3, 53-64.

Иванов Д.Д., Фролов К.В., Левина А.И. 2024. Построение концептуального описания имитационной модели эксплуатации воздушных судов в рамках задачи классификации пунктов наземного обслуживания. *Авиакосмическое приборостроение* 1, 55-68.

ISO. 2019. ISO 13374-1:2019. Condition monitoring and diagnostics of machines — Data processing, communication and presentation. International Organization for Standardization.

Jardine, A. K. S., Lin, D., Banjevic, D. 2006. A review on machinery diagnostics and prognostics implementing condition-based maintenance. *Mechanical Systems and Signal Processing*, 20(7), 1483–1510. <https://doi.org/10.1016/j.ymssp.2005.09.012>

Kabashkin, I., Perekrestov, V., Pivovar, M. 2025. AI-Driven Fault Detection and Maintenance Optimization for Aviation Technical Support Systems. *Processes*, 13(3), 666. <https://doi.org/10.3390/pr13030666>

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D. 2014. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. *Mechanical Systems and Signal Processing*, 42(1–2), 314–334. <https://doi.org/10.1016/j.ymssp.2013.06.004>

McKinsey & Company. 2020. Predictive maintenance 4.0: Beyond the hype. Industry report.

Meissner, R., Rahn, A., Wicke, K. 2021. Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. *Reliability Engineering & System Safety*, 214, 107812. <https://doi.org/10.1016/j.ress.2021.107812>

Mobley, R. K. 2002. An Introduction to Predictive Maintenance (2nd ed.). Butterworth-Heinemann.

Muneer, A., Taib, S. M., Fati, S. M., Alhussian, H. 2021. Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine. *Symmetry*, 13(10), 1861. <https://doi.org/10.3390/sym13101861>

NTSB. 2023. Aviation accident database query: Helicopter maintenance-related incidents (1982-2024). URL: <https://www.ntsb.gov/Pages/ResultsV2.aspx?queryId=fb47651f-4fb1-4c22-a680-89c372373a1a> (date of access: 07.03.2025)

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., Schwabacher, M. 2008. Metrics for evaluating performance of prognostic techniques. 2008 International Conference on Prognostics and Health Management, 1–17. <https://doi.org/10.1109/PHM.2008.4711436>

Si, X. S., Wang, W., Hu, C. H., Zhou, D. H. 2011. Remaining useful life estimation—A review. *IEEE Transactions on Reliability*, 60(2), 476–493. <https://doi.org/10.1109/TR.2011.2138700>

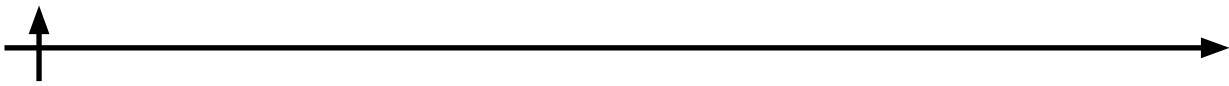
Smith, J. D., Johnson, R. L. 2018. Aviation Safety and Risk Management. Routledge.

Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., Wang, W. 2015. Prognostics and health management: A review on data-driven approaches. *Mathematical Problems in Engineering*, 2015, 793161. <https://doi.org/10.1155/2015/793161>

Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., Wu, B. 2006. Intelligent Fault Diagnosis and Prognosis for Engineering Systems. John Wiley & Sons.

Wang, P., Youn, B. D. 2019. A generic probabilistic framework for structural health monitoring and prognosis of various engineering systems. *Structural Health Monitoring*, 18(3), 910–928. <https://doi.org/10.1177/1475921718765943>

Willis Towers Watson. 2023. General Aviation Insurance Market Review Q3 2023. <https://www.wtwco.com/en-gb/insights/2023/09/general-aviation-insurance-market-review-q3-2023>



INFORMATION ABOUT AUTHOR / ИНФОРМАЦИЯ ОБ АВТОРЕ

GUMBO Kudakwashe – student.
E-mail: gumbokudakwashe1999@gmail.com
ГУМБО Кудакваше – студент.
E-mail: gumbokudakwashe1999@gmail.com

*Статья поступила в редакцию 28.09.2025; одобрена после рецензирования 10.10.2025;
принята к публикации 21.10.2025.*

The article was submitted 28.09.2025; approved after reviewing 10.10.2025; accepted for publication 21.10.2025.