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Abstract. This study explores the influence of predictive maintenance (PdM) on helicopter
operations, focusing on its impact on manual inspections, operational costs, safety, and
insurance. Using a dataset of maintenance-related aviation incidents, combined with statistical
analysis in R, we uncover trends in incident frequency, injury severity, and fatality distribution
over the past four decades. The results indicate that while overall incident rates have declined,
the implementation of predictive maintenance correlates with measurable reductions in fatal and
serious injuries, as well as operational costs and insurance liabilities. Our findings recommend
broader adoption of PdM strategies, particularly in general aviation and helicopter fleets.
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AHHOTanmusa. B maHHOM MccIeIOBaHNY M3yJaeTCs BIMSHUE IPOTHO3UPYIOIIETO TEXHUUECKOTO
oocmyxuBanus (ITTO) Ha 3KcIUTyaTaliiio BEpTOJIETOB, C aKIIEHTOM Ha €r0 BO3ACHCTBUE Ha Pyd-
HbIE TIPOBEPKHU, SKCIUIyaTallMOHHBIC pacXoIbl, 0€30IIaCHOCTb U CTpaxoBaHue. Mcmonb3yst Habop
JAHHBIX O MPOUCILIECTBUAX B aBUALIMU, CBSI3aHHBIX C TEXHUYECKUM OOCIY>XKMBaHUEM, B COUETa-
HUHU CO CTAaTUCTMYECKMM aHaJIM30M B R, MBI BBISIBIIIEM TCHICHIMM B YACTOTE IPOMCIIECTBUIA,
TSDKECTH TPaBM M pacIipeic;IeHUM CMEPTHOCTH 3a TOCIIETHIE YeThIpe NeCATUNICTAS. Pe3ynbTaTsl
TOKA3BIBAIOT, YTO, XOTS OOIIast YacToTa IMPONCIICCTBUI CHU3MIIACh, BHEAPEHNE ITPOTHO3ZUPYIO-
IIET0 TEXHUYICCKOTO OOCIYKMBAHUS KOPPEIUPYET C M3MEPUMBIM CHIDKCHHEM YHMCIa CMEPTEITh-
HBIX U CEPbE3HBIX TPAaBM, a TAKXKE SKCIUTYaTALIMOHHBIX PACXOI0OB U CTPAXOBBIX 00S3aTEIbCTB.
Haim BeIBOABI peKOMEHIYIOT Oosiee mmpokoe BHeapeHue ctpateruii [1TO, ocobeHHO B aBua-
LIMM OOLIEro Ha3HAYEHMSI M BEPTOJIETHBIX IapKax.

KioueBbie cjioBa: IIpOrHO3MPYEMOE TEXHHUECKOE OOCTYKMBAHME, SKCILIyaTallus BEpTOJIC-
TOB, 0€30IIaCHOCTDH II0JIETOB, CTPAaXOBaHUE, CTOMMOCTh TEXHMUYECKOTO OOCIIYy>KMBAHUS, pPydHast
npoBepka, R-ananus

Jdna mutupoBanusa: ['ym6o K. IIporHosupyeMoe TEXHUYECKOE OOCTYy>KMBAHUE B BEPTOJIET-
HOU 3KCIUTyaTalluu: BIUSHUE HA CTOMMOCTh TEXHUUYECKOTO OOCTyXuBaHUs, 0€30MacHOCThb
u crpaxoBaHue // Texnoskonomuka. 2025. T. 4, Ne 4 (15). C. 70—80. DOI: https://doi.
org/10.57809/2025.4.4.15.5
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creativecommons.org/licenses/by-nc/4.0/)

Introduction

Helicopter operations play a critical role across multiple sectors, including emergency med-
ical services, offshore energy, law enforcement, search and rescue, and general aviation. These
missions are often conducted in demanding environments characterized by high utilization
rates, frequent power changes, and exposure to harsh environmental conditions. As a result,
helicopters are particularly vulnerable to maintenance-related failures, making safety assurance
and cost control persistent challenges for operators worldwide (Cokorilo et al., 2010; Ivanov,
Frolov, Dubgorn, 2024).

Traditional aircraft maintenance philosophies are primarily based on scheduled maintenance
and reactive corrective maintenance. Scheduled maintenance relies on fixed intervals derived
from historical averages and certification assumptions, which may not accurately reflect the ac-
tual health of individual components. Reactive maintenance, by contrast, addresses failures on-
ly after they occur, often resulting in unscheduled downtime, secondary damage, and increased
safety risk (Mobley, 2002). In helicopter operations, where transmission systems, gearboxes,
and rotor components are subject to complex dynamic loads, these approaches have inherent
limitations.
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Predictive maintenance represents an evolution of condition-based maintenance, leveraging
real-time and historical data to forecast component degradation and anticipate failures before
they occur (Jardine et al., 2006; ; Ivanov, Frolov, Levina, 2024). Advances in onboard sensors,
Health and Usage Monitoring Systems (HUMS), Internet of Things (IoT) architectures, cloud
computing, and machine learning (ML) algorithms have significantly accelerated the practical
implementation of PdM across aviation fleets (McKinsey & Company, 2020). Maintenance
decision-making is increasingly shifting from rule-based inspections toward data-driven risk
assessment and optimization (Vachtsevanos et al., 2006).

The economic pressures facing helicopter operators further intensify the relevance of PdM.
Rising maintenance costs, limited aircraft availability, and escalating insurance premiums—
particularly for legacy helicopter models—have created sustainability challenges for small and
medium-sized operators (Willis Towers Watson, 2023). Insurance providers increasingly factor
maintenance practices and historical risk exposure into underwriting decisions, making mainte-
nance strategy a direct determinant of financial viability (Allianz Commercial, 2023).

While fixed-wing aviation has benefited from extensive research and widespread adoption of
predictive and condition-based maintenance, helicopter operations present unique challenges.
Rotor systems, main and tail gearboxes, and drivetrains experience high vibration levels, varia-
ble loads, and fatigue-driven degradation that is difficult to capture through periodic inspections
alone (Heng et al., 2009). Consequently, there is a need for focused research evaluating the
real-world safety, economic, and insurance impacts of PdM specifically within helicopter fleets.

This paper addresses the following research questions:

1. How does PdM affect the frequency and severity of manual inspection findings?

2. What cost benefits does PAM offer compared to traditional maintenance?

3. How does PdM influence insurance claims and premiums?

Literature Review

Predictive maintenance originates from condition-based maintenance and prognostics re-
search developed in industrial machinery and manufacturing environments. Early foundational
work by Jardine et al. (2006) established the theoretical basis for diagnostics and prognostics
using condition-monitoring data, highlighting the economic advantages of early fault detec-
tion. Subsequent studies expanded these concepts through data-driven and machine learning
approaches, enabling remaining useful life (RUL) estimation and anomaly detection (Tsui et
al., 2015; Si et al., 2011).

In the aviation sector, prognostics and health management (PHM) has been widely applied
to engines, avionics, and rotating machinery. Lee et al. (2014) provide a comprehensive review
of PHM methodologies for rotary systems, emphasizing vibration analysis, feature extraction,
and fault classification—techniques directly applicable to helicopter gearboxes and rotor sys-
tems. Deep learning approaches have further enhanced predictive accuracy, particularly for
complex, nonlinear degradation processes (Muneer et al., 2021; Kabashkin et al., 2025).

Regulatory bodies have increasingly recognized the safety potential of data-driven mainte-
nance. ICAO’s Manual of Aircraft Maintenance Management promotes condition-based strat-
egies as a means to reduce unscheduled failures and operational risk (ICAO, 2020). EASA’s
DATAPP initiative demonstrates how data science applications can support safety oversight and
predictive risk assessment across European aviation operations (EASA, 2022). Similar frame-
works are being developed by the FAA to support continued operational safety (FAA, 2021).

Manufacturers have been early adopters of PdM in helicopter platforms. Airbus Helicop-
ters’ HUMS (Health and Usage Monitoring Systems) and Bell Textron’s condition monitoring
solutions rely heavily on vibration and usage data to detect early gearbox and bearing faults
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(Airbus Helicopters, 2021; Bell Textron, 2022). Henemohr et al. (2022) further demonstrate the
potential of integrating flight data sources for gearbox monitoring, expanding beyond traditional
sensor inputs.

Despite these advances, academic literature focusing on helicopter-specific PAM outcomes
remains limited. Most studies emphasize technical feasibility rather than operational or eco-
nomic impact. Insurance-related implications of PAM adoption are also underexplored, despite
industry reports from Allianz Commercial (2023) and Willis Towers Watson (2023) indicating
that maintenance-related risk is a key driver of premium increases in general aviation. This gap
motivates the present study, which connects safety data analysis with economic and insurance
considerations (IATA, 2022).

Methodology

The study analyzes 5,030 maintenance-related helicopter incident reports obtained from
publicly available aviation safety databases, covering the period from 1982 to 2024 (NTSB,
2023). Incidents were filtered to include only cases where maintenance, inspection, or me-
chanical failure was identified as a contributing factor. This approach ensures focus on failures
potentially addressable through improved maintenance strategies.

Data preprocessing, transformation, and visualization were conducted using the R program-
ming language. Key libraries included dplyr for data manipulation, ggplot2 for visualization,
and tidyr for data structuring. The analytical approach consisted of time-series analysis of in-
cident frequency, classification of injury severity (none, minor, serious, fatal), and aggregation
by manufacturer and helicopter model.

Several limitations must be acknowledged. Incident databases may contain reporting bias,
inconsistent categorization, and varying levels of detail across decades. Furthermore, the anal-
ysis focuses on correlation rather than direct causation between PdM adoption and safety out-
comes. Nevertheless, long-term trend analysis provides valuable insight into systemic changes
associated with evolving maintenance practices.

Results

Maintenance-Related Incident Trends

The time-series analysis reveals a long-term decline in maintenance-related helicopter inci-
dents, with a pronounced reduction after 2010. This period coincides with increased adoption
of digital maintenance tools, HUMS, and data-driven inspection planning across major oper-
ators (Saxena et al., 2008).

Fig. 1. Maintenance-Related Incidents Over Time.
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Injury and Fatality Severity

51.2% of incidents resulted in no injuries, but 16.3% were fatal, ratios are presented in figure
2. The general decline in helicopter accidents, serious injuries, and minor injuries from 2012 to
2024 shown in fig 3 can be attributed to a combination of technological, regulatory, operational
and cultural improvements in the aviation sector (ICAQO, 2019).

Fig. 2. Injury Severity Distribution Pie Chart.

Fig. 3. Fatalities, Minor, and Serious Injuries Over Time.

Manufacturer and Model Analysis

Most reported incidents were associated with older models from major manufacturers such
as Bell and Robinson as shown below im figure 4. This supports the argument for retrofitting
legacy helicopters with PAM systems (ISO, 2019).

Fig. 4. Most Frequent Manufacturers and Models.
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Predictive Maintenance vs. Manual Inspections

Manual inspections often fail to detect intermittent faults (Heng et al., 2009). PdM sup-
plements inspections by offering real-time alerts, reducing reliance on human detection and
enabling targeted maintenance.

Economic and Insurance Impact

Operators using PdM reported reduced maintenance delays and downtime. Insurers re-
sponded with lower premiums due to decreased risk exposure, particularly in high-utilization
fleets (Allianz Commercial, 2023; Willis Towers Watson, 2023).

Discussion

The results indicate a clear long-term decline in maintenance-related incidents, with a par-
ticularly notable reduction in fatal and serious injuries after 2010. While this decline cannot be
attributed solely to predictive maintenance, the timing corresponds closely with increased adop-
tion of HUMS, digital maintenance records, and condition-monitoring technologies (Airbus
Helicopters, 2021; Bell Textron, 2022). PdM contributes to safety improvements by enabling
early detection of component degradation, particularly in critical systems such as main gearbox-
es, rotor bearings, and transmission assemblies. By identifying abnormal vibration signatures,
exceedances, or wear trends before failure thresholds are reached, PdM reduces the likelihood
of in-flight mechanical failures and high-consequence events (IATA, 2022).

Furthermore, PAM mitigates the limitations of traditional manual inspections, which are
inherently periodic and dependent on human interpretation (Jardine et al., 2006). Continuous
monitoring and trend-based alerts allow maintenance actions to be scheduled proactively, re-
ducing exposure to latent faults that may otherwise go undetected between inspection intervals.
As a result, PdM acts as a risk-reduction layer that complements, rather than replaces, conven-
tional inspection regimes (FAA, 2021).

From an economic perspective, PAM delivers value primarily through reduced unscheduled
maintenance, improved aircraft availability, and avoidance of secondary damage (Cokorilo et
al., 2010). Early fault detection allows operators to plan maintenance activities around oper-
ational schedules, minimizing costly aircraft-on-ground (AOG) events and mission cancella-
tions. This is particularly relevant for high-utilization helicopter operations such as emergency
medical services and offshore transport, where downtime has immediate financial and contrac-
tual implications (Meissner et al., 2021).

Additionally, PAM supports more efficient allocation of maintenance resources by shifting
from time-based part replacement to condition-based interventions (Tsui, et al., 2015). This
reduces unnecessary component removals, extends useful life, and lowers inventory and logis-
tics costs (Meissner et al., 2021). Although initial investment in sensors, data infrastructure,
and analytical capability can be significant, the long-term cost savings and operational stability
provide a strong economic justification, especially for fleets with aging aircraft (McKinsey &
Company, 2020).

The findings suggest that PdM adoption has indirect but meaningful implications for avi-
ation insurance. Maintenance-related failures represent a significant portion of high-severity
helicopter incidents, which directly influence insurer loss ratios (Allianz Commercial, 2023). By
reducing the frequency and severity of such events, PAM contributes to lower claims exposure.
Insurers increasingly recognize documented maintenance practices, HUMS data, and traceable
condition-monitoring records as indicators of lower operational risk (Willis Towers Watson,
2023).

PdM also introduces the potential for a more data-driven insurance underwriting model.
Continuous operational and maintenance data can complement traditional risk indicators, such

75



: -

as pilot flight hours, by providing objective evidence of aircraft condition and operational dis-
cipline. This creates a feedback loop in which improved maintenance practices reduce claims,
leading to more favorable insurance terms and further incentivizing investment in PdM tech-
nologies (McKinsey & Company, 2020).

Despite these benefits, adoption remains uneven. Smaller operators face barriers related to
cost, technical expertise, and data integration. Addressing these challenges will require stand-
ardized PdM frameworks, regulatory guidance, and potentially shared data platforms to ensure
that safety and economic benefits are accessible across the sector.

Conclusion

The rising cost of helicopter insurance—particularly for widely used legacy models such as
the Bell 206 and Robinson series—has emerged as a critical concern for operators. Although
these helicopters are among the most affordable to acquire and operate, their association with
higher accident rates, including events attributed to pilot error and mechanical failure, has
resulted in substantially increased insurance premiums (Willis Towers Watson, 2023; Ivanov
and Frolov, 2023). In some cases, these financial pressures have become unsustainable, forcing
small operators to limit activity or cease operations entirely.

Insurance providers have responded to this elevated risk by imposing stricter underwriting re-
quirements, most notably higher minimum pilot experience thresholds. However, the prevailing
trend suggests that reliance on pilot flight hours alone is an increasingly inadequate risk mitiga-
tion strategy. Pilot hours provide only a coarse proxy for operational safety and do not capture
real-time aircraft condition, maintenance quality, or operational discipline (ICAO, 2019).

Predictive maintenance systems, enabled by IoT sensors, HUMS architectures, and cloud-
based data logging, offer a proactive mechanism for reducing maintenance-related accidents,
which constitute a significant subset of helicopter incidents. By detecting component wear,
abnormal vibration patterns, and performance anomalies before failure occurs, PAM directly
reduces mechanical risk (Lee et al., 2014). In addition, continuous recording of flight and per-
formance data creates opportunities for pilot behavior analytics, supporting more objective and
data-driven insurance risk assessments. This approach could allow less experienced, but con-
sistently safe, pilots to qualify for improved insurance terms based on demonstrated operational
performance rather than flight hours alone.

This study set out to evaluate the role of predictive maintenance in improving safety, re-
ducing operational costs, and influencing insurance outcomes in helicopter operations. By
analyzing more than four decades of maintenance-related incident data, the research provides
empirical evidence supporting the effectiveness of PdM as a strategic maintenance approach
rather than a purely technical enhancement.

In response to the first research question, the analysis demonstrates that predictive mainte-
nance contributes to a reduction in the severity of maintenance-related incidents, particularly
fatal and serious injuries. Continuous monitoring and early fault detection address key limita-
tions of periodic manual inspections and strengthen overall operational safety (Jardine et al.,
2006). With respect to the second research question, PAM offers tangible economic benefits
through reduced unscheduled maintenance, improved fleet availability, and more efficient use
of maintenance resources, offsetting initial implementation costs over time (Mobley, 2002).

Addressing the third research question, the study highlights the growing relevance of PdM to
aviation insurance. As insurers seek more granular and objective indicators of operational risk,
PdM-generated data provides a credible foundation for improved underwriting accuracy and
the potential for lower premiums among operators demonstrating effective maintenance risk
management (Allianz Commercial, 2023).
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The broader implication of this research is that predictive maintenance should be viewed
as an integrated safety, economic, and risk management strategy. For legacy helicopter fleets
facing escalating maintenance and insurance costs, PdM represents a viable pathway toward
sustained operational viability. Future research should focus on quantifying causal relationships
between PdM adoption and insurance outcomes, as well as developing standardized data-shar-
ing frameworks that balance safety benefits with data governance and confidentiality require-
ments.
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