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Abstract. This research investigates platinum price seasonality using high-order autoregressive
modeling. The research object is daily platinum price dynamics (LME data, 2015—2024), focusing
on long-term dependencies and cyclical patterns. The method employs stepwise decomposition
of a 270-day lag autoregression AR(270) into computationally efficient 15-day lag sub-models,
enabling significance testing of all coefficients while minimizing resource demands. Results
identify the one-day lag as the dominant predictor, with marginal effects at 6—15-day lags
and MAPE (1.15%) confirm model robustness. Conclusions indicate no statistically significant
weekly cycles due to the overwhelming influence of short-term lags, though the method’s
applicability in low-resource environments (e.g., Microsoft Excel) facilitates accessible high-
order autoregression.
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AnHoramusg. B 1aHHOM MCClIemoBaHUM M3YJaeTCsI CE30HHOCTD 1IeH Ha IUIATUHY C MCITOJB30-
BaHUEM aBTOPErPECCUMOHHOIO0 MOJCIMPOBAHUSI BLICOKOro Imopsaka. OObeKTOM MCCIeAOBaHUS
SIBJISICTCSI €XeIHEeBHasA NIMHAMUKa IieH Ha IiaTtuHy (maHHbele LME 3a 2015-2024 rr.) ¢ akiieH-
TOM Ha JOJITOCPOYHBIC 3aBUCUMOCTU M LIMKJIMYECKHE 3aKOHOMEPHOCTU. MeTOon MCIIONb3yeT
MolaroByto nekommo3unuio aproperpeccun AR(270) ¢ 3amazabiBaHueM B 270 mHeir Ha 3¢-
¢GeKTUBHBIE B BBEIYMCIUTEILHOM OTHOIIEHWM TIOAMOIEIN C 3ama3gblBaHWEM B 15 mHeEH, 4To
MTO3BOJIAET TIPOBEPSITH 3HAUNMMOCT BCeX KO(POUIIMEHTOB ITpY MUTHUMM3AIINH 3aTPaT PECYPCOB.
PesynbraTel MOKA3BIBAIOT, YTO 3aepKKa Ha OOWH ACHb SIBJISICTCS TOMWHUPYIOIIUM IIPEINKTO-
pPOM, C He3HauMTeJIbHbIMU 3ddekTamMmu mpu 3amepxke Ha 6-15 mgueit, a MAPE (1,15%) non-
TBEpXKIAeT HaIEeXKHOCTb MOJeaU. BBIBOMBI yKa3hIBaIOT HA OTCYTCTBUE CTATUCTUUYECKN 3HAYMMBbIX
HeJleIbHBIX IIMKJIOB M3-3a MOJABJISIONIErO BIUSIHUS KPAaTKOCPOYHBIX 3aIePXKEK, XOTsI IIPUMEHU-
MOCTh METOJIa B CpellaX C HM3KMM YpOBHEM pecypcoB (Hampumep, Microsoft Excel) obieryaer
JIOCTYI K aBTOPETPECCUU BBICOKOTO TTOPSIIKA.

KimoyeBbie cj10Ba: IpOrHO3MpOBaHUE LIEH Ha ILIATMHY, aBTOPErpeccusi BHICOKOIO MOpsIKa,
CE30HHBIE IIUKJIBI, ITOIIAroBas AeKOMIIO3UIIMS, BRIYMCIUTEIbHAs 3(D(hEeKTUBHOCTD, KO3 hUII-
€HTHI C 3ama3abIBaHUEM, aHAJIN3 BPEMEHHBIX PSIOB

Jna ourupoBanmsa: KimmentoB A.P. HMcciaemoBaHume Ce30HHOCTH II€HBI ILTIATUHBI C
MMOMOIIbIO aBTOperpeccuu 0oJploro nopsaka // TexHnoskoHomuka. 2025. T. 4, Ne 2 (13). C.
70—79. DOI: https://doi.org/10.57809/2025.4.2.13.7

DTO cTaThsl OTKPHITOTO NOCTYyIA, pactpoctpaHsemas no auieH3nu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/).

Introduction

Forecasting the price dynamics of semi-precious and precious metals is a critical task, as
these prices significantly impact various economic sectors and industries. Platinum, for in-
stance, is widely used in automotive manufacturing, medicine, and electronics. Platinum prices
are influenced by macroeconomic factors, industry-specific trends, and seasonal fluctuations.
At the same time, modern research highlights the complex interaction of macroeconomic news
and structural demand changes in the formation of seasonal patterns of precious metals, includ-
ing platinum (Elder, 2012; Mirkin, 2014).

Investigating price seasonality and identifying long-term cycles is of particular interest. Un-
derstanding periodic components in precious metal price dynamics can improve long-term
forecasting accuracy (Mirkin, 2012).

Classical works like (Box, 1976) laid the foundation for autoregressive (AR) models, now
widely applied to precious metal price forecasting (Troutman, 1979; Morimune, 1995). Howev-
er, identifying long-term trends and cyclical patterns requires more complex models.

High-order vector autoregression models AR(p), where p is the lag order, can capture linear
dependencies across extended time intervals. These models face challenges including high com-
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putational complexity and numerous coefficients (Svetunkov, 2022; Bogomolov, 1996). Alter-
native approaches, such as Bayesian estimation methods (Chib, 1994), are also aimed at solving
problems of high dimensionality and multicollinearity in models with large lags, although they
require other computing resources. Diverse methods that could improve autoregression models
are observed today, for example, complex-valued modelling (Stein, 2002; Phillips, 1987). This
study employs a stepwise decomposition method for high-dimensional AR models proposed in
(Svetunkov, 2012).

Materials and Methods
Platinum price data was sourced from the London Metal Exchange (LME) open database.
The data is represented as timeseries with one day steps of platinum mean price values in stock
market. The daily time series covers 23 November 2015 to 29 November 2024, with Septem-
ber—November 2024 reserved for validation.
The AR(270) model allows to present the general view:
Yoz =y T4 Va0 T Ay Voes Tt Ay ) (1)
where a,a,,...,a,,, are coefficients of autoregressive model and y,,..., y,,, the price with the
appropriate time shift.
In order to get model (1) it is necessary to construct 18 models with 15-days lag which re-
duces the computational complexity. These models could be given in the following form:
D15 =bly +bl y, +.. bl y, ()

V3o =020 +D02, y,g +... 4+ D25y 5
Y, =03, +b31}f_44 +..+b3 5y,

Vazo =b18y + D18, yy59 +...+ D185 yyss

where bk coefficients correspond to the k model equations.

For computational convenience and to investigate the regression with a 135-day lag, the
model derivation was divided in two stages. In the first stage, coefficients for the AR(135) and
AR(135—270) models were obtained, where the former accounts for the influence of elements
with lags ranging from 1 to 135 days, while the latter covers lags from 135 to 270 days.

Each of the models above (AR(135) and AR(135-270)) consist of 9 models from (2). There-

fore, they could be written in the form: P - o
14
yl35:a0+agi5 +a2)§0\+...+a9y1§\ (3)

"
Yoo T O Ty Viso T Gy Yies T T Gy Vagg
where «,...,a,; coefficients of models (2) linear combination.

In the second stage, the equation (4) as a linear combination of models (3) could be con-
structed:

Yoz =By + /31)’1”35 + ﬂzy;’m 4

Varo = B+ B+ Y5 + Ay yyg + o+ U Yias) +

o~

+5, (g + &y Viso + Uy Vigs oot Qg Vo)
where By, 5, B, coefficients which allow to compose AR(270) model from AR(135) and
AR(135-270) models.
Subsequently, it is only necessary to substitute the equations of models (2) into (3) and (4).
By grouping coefficients, we can then derive the target coefficients of model (1). These coeffi-
cients may be expressed in the form:
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Thus, we can construct an AR(270) regression model that accounts for platinum price dy-
namics with a 270-day depth, enabling identification of long-term dependencies and cycles.

Subsequently, statistically significant coefficients should be identified to build a refined mod-
el exclusively incorporating these coefficients, which yields optimal predictive accuracy.

The steps above can be implemented in Microsoft Excel using the Data Analysis tool pack-
age. After constructing the first set of models, the AR(135) model according to equation (3) can
be developed, producing the comparative plot of actual data versus model predictions shown
in Figure 1.

Fig. 1. The plot of AR(135) regression.

Fig. 2. The plot of AR(135-270) regression.
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The graph demonstrates substantial agreement between actual data and model predictions.
Subsequently, analogous procedures should be performed for the remaining nine models (2),
then combined as specified in equation (3). This yields the AR(135—270) regression covering
lags from 135 to 270 days (Figure 2).

Subsequently, using equations (4) and (5), we can construct the comprehensive AR(270)
autoregression model, which combines the two preceding models. The comparative plot of the
full model against actual data is shown in Figure 3.

Fig. 3. The plot of AR(270) regression.

Moreover, the contribution of different coefficients to the overall model must be evaluated.
The coefficients exhibiting the greatest impact are a,,a,a,,aq,4,,,4,,,4,5,4,s. Their values are
presented in Table 1.

Table 1. The most valuable coefficients

4, 0.9936
ag -0.0651
a, 0.0593
ag -0.0261
a, 0.0502
a, -0.0346
&3 0.0456
a5 -0.0351
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The values demonstrate that coefficient a_1 contributes significantly more than other coeffi-
cients, though the listed coefficients still exhibit marginal influence on the model.

In addition, an autoregression model incorporating only these significant coefficients was
constructed and based on the corresponding elements above (Figure 4).

Fig. 4. The plot of AR with inly valuable elements.

The given plot demonstrates that the autoregression model with valuable elements also al-
lows to get high quality description of platinum prices.

Results and Discussion
After several models were constructed their quality with AIC criterium and sum of squared
deviations were rated. The results of this rating are provided in Table 2.

Table 2. Values of AIC and sum of squared deviations for constructed models

Model Sum of squared deviations AIC
AR(15) 501046.43 5.40
AR(30) 6463860.00 7.97
AR(45) 10553145.40 8.46
AR(60) 13663363.90 8.73
AR(75) 15389746.90 8.85
AR(90) 16672730.03 8.94
AR(105) 17929456.29 9.02
AR(120) 18498608.69 9.06
AR(135) 19189262.52 9.10
AR(150) 19630640.97 9.13
AR(165) 19896583.86 9.15
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Model Sum of squared deviations AIC
AR(180) 19931981.53 9.16
AR(195) 19251665.32 9.13
AR(210) 19013775.30 9.13
AR(225) 18924874.53 9.13
AR(240) 18914368.36 9.14
AR(255) 18927227.47 9.15
AR(270) 18917953.72 9.15
AR(1-135) 473310.95 5.41
AR(150-270) 17927793.70 9.14
AR(1-270) 451061.00 5.40

AR val 501420.61 5.40

The visualization of Table 2 is represented in Figures 5 and 6.

Fig. 5. The plot of AIC values for models.




Fig. 6. The plot of sum of squared deviations for models.

Based on the data provided, it can be seen that all models with valuable coefficients from
Table 1 have the best values. You can also calculate the average percentage error of MAPE
using a model with significant coefficients, which will be 1.15%. This value indicates the high
quality of the resulting model.

The overwhelming significance of the one-day lag aligns with findings in ML-based studies,
where short-term technical indicators often dominate predictions for precious metals (Cohen,
2022). This suggests that platinum prices are primarily driven by immediate market reactions
rather than latent seasonal cycles.

Conclusion

The method employed in this study enables the construction of a high-order autoregression
with a 270-day lag. This allows for the assessment of the impact of the platinum price from over
six months prior on its current price. Furthermore, this method facilitates the evaluation of the
significance of all coefficients.

Additionally, the method is not computationally intensive. This is because it involves com-
puting a low-order regression at each stage, making it feasible for implementation even using
tools like Microsoft Excel.

Following the evaluation of the constructed models, it was concluded that the platinum price
is most significantly influenced by its value on the preceding trading day. This result is consist-
ent with the well-known high sensitivity of precious metals markets to the latest available infor-
mation and short-term changes in supply and demand (Batten, 2008), which may overshadow
weaker seasonal signals. A minor influence was also observed from data with lags ranging from 6
to 15 days, corresponding to a cycle of 1-3 trading weeks. However, since the influence of these
elements is an order of magnitude lower than that of the coefficient, it is not possible to draw
a definitive conclusion regarding the presence of weekly cycles in platinum price dynamics. It
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is important to note that the conclusion that there are no statistically significant weekly cycles
should be interpreted with caution within the framework of the chosen linear AR specification.
As emphasized in the literature (Hansen, 2005), complex nonlinear dependencies or structural
shifts can be masked in linear models, and alternative specification methods (for example, mod-
els with time-varying parameters or threshold models) could potentially reveal other patterns.
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