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Abstract. This article discusses the possibility of predicting the values of a series using 
complex-valued autoregression with an error for short-term forecasting. The authors consider 
the basic concepts of the function of a complex-valued variable and the model of complex-
valued autoregression, together with the results of applying first- and second-order models 
of complex-valued autoregression with the CARE(p) error to describe and predict the initial 
series. The results obtained are compared with the first- and second-order autoregression in real 
numbers. A complex-valued autoregression model with an error showed a more accurate result 
for short-term forecasting, unlike the autoregression model in real numbers. The authors also 
conclude that complex-valued autoregression with an error is subject to further investigation in 
order to find out the prospects of using its imaginary part.
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Аннотация. В данной статье рассматривается возможность прогнозирования значений 
ряда с использованием комплекснозначной авторегрессии с ошибкой для краткосрочного 
прогнозирования. Рассматриваются основные понятия теории функции комплекснознач-
ного переменного и модели комплекснозначной авторегрессии, приводятся результаты 
применения моделей первого и второго порядка комплекснозначной авторегрессии с 
ошибкой CARE(p) для описания и прогнозирования исходного ряда, сравниваются полу-
ченные результаты с результатами авторегрессии первого и второго порядков в действи-
тельных числах. В результате исследования, авторами был сделан вывод о возможности 
применения модели комплекснозначной авторегресии с ошибкой, так как она показала 
более точный результат для краткосрочного прогнозирования, в отличие от модели ав-
торегрессии в действительных числах. Так же делается вывод, что комплекснозначная 
авторегрессия с ошибкой подлежит дальнейшему исследованию, чтобы выяснить воз-
можность применения её мнимой части.
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Introduction
Nowadays, humans often ask themselves the question, “What’s coming?”. We tend to find 

specific interest in the events that are coming even if it is impossible to look into the future. 
Many forecasters try to make their prognosis as close to reality as possible. Unfortunately, a 
forecast can never be one hundred percent correct, since numbers and formulas fail to describe 
our complex and constantly changing world. Still, everyone is trying to find a model that will 
be able to capture the trends of change.

As the volume of data in today's information society grows, forecasting plays an important 
role in various fields, from economics and finance to data science and marketing. Forecasting is 
an integral part of our lives. Every day we attempt to predict the outcome of various events and 
calculate our chances for all possible options. We even check out the weather forecast before 
going outside.

There are many different models that are capable of “predicting” the future to varied de-
grees. This research focuses on modelling stationary reversible processes that can be predicted 
using autoregressive models. Today, autoregressive models are the most frequently used ones in 
short-term economic forecasting (Svetunkov, 2021). For some reason, most forecasters use real 
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numbers for their forecasts, considering complex numbers to be the prerogative of physicists 
and mathematicians (Doronin, 2023; Andrei, 2021). It does make sense, since complex num-
bers consist of two parts: real and imaginary. However, what is the imaginary part in the real 
world? Most forecasters probably stumble at this question and get back to the well familiar real 
numbers. For example, when modelling production processes, production functions of complex 
variables describe these processes in more detail and, in a number of cases, demonstrate greater 
accuracy than production functions of real variables (Svetunkov, 2019).

In this paper the authors briefly review the theory of complex-valued variables and examine 
the application of complex-valued autoregressive models such as CARE.

Materials and Methods
A complex number is a pair of numbers consisting of two parts – real and imaginary:

Z x iy� �
where,
x is the real part of a complex number; 
іу is the imaginary part of a complex number; 
x and y are real numbers; 
і is the imaginary unit, which satisfies the equality: i � �1
Complex numbers are quite an interesting tool that gives more possibilities, unlike real num-

bers. At the same time, it is possible to carry out all the same operations with real numbers as 
with complex numbers (Vasilyeva, 2019). Why then, is this tool not as popular among forecast-
ers? It happens to be all about the imaginary part. Many do not understand its meaning in the 
real world, which is clear, because there is nothing imaginary in our world, only real. In fact, 
complex numbers are simply a tool for reflecting reality, like any procedure in mathematics, so 
almost any characteristic of a process can become imaginary.

A complex number consists of a pair of numbers. Thus, in order to reflect it on a plane, two 
numerical axes must be used. The real part of the number is plotted along the abscissa axis, and 
the imaginary part along the ordinate axis. Figure 1 shows a complex number in a Cartesian 
coordinate system.

Fig. 1. Complex number in Cartesian coordinate system.

A complex number can be represented as a vector that starts at the origin and ends at point 
Z. Then any complex number can be represented in polar coordinates:
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z x iy r i� � � �(cos sin )� �                                       (2)
where,
ϕ  is the polar angle;
r is the polar radius (vector length), which is called the modulus of a complex number 

(Zvereva, 2021). 
The modulus of a complex number is equal to:

r x y� �2 2                                                  (3)
The polar angle can also be easily found:

� � �arctg y
x

k2�
                                             (4)

where,
k is an integer. Sometimes the polar angle is called the argument of a complex number. In 

most cases, the condition k = 0 is accepted.
The fact that complex numbers can be considered simultaneously in both Cartesian and 

polar coordinates is their advantage over real numbers. Another important property of complex 
numbers, which will be useful to us for further research, is that two complex numbers are equal 
to each other if and only if their real and imaginary parts are equal to each other:

y iy F y iy f x if xr i r i r r i i� � � � �( ) ( ) ( )                                 (5)
We will consider the following form as a more compact:

y f x
y f x
r r r

i i i

�
�

�
�
�

( )

( )                                                  (6)
It is important to note that in this form of notation we have gotten rid of the imaginary unit, 

and for those who are not familiar with the theory of functions of a complex-valued variable, 
it will be easier to perceive this equality (the imaginary unit remains only in the indices to dis-
tinguish between variables). Modern researchers who use random variables in their work always 
believe that their parts (real and imaginary) are independent of each other (Tavares, 2006; 2007; 
Kennedy, 2008). Some scientists also consider the dependence of these parts, although they add 
the prefix “pseudo” – pseudo covariance or pseudo dispersion (Kammeyer, 2002; Picinbono, 
2009). S.G. Svetunkov in his works (Svetunkov, 1999; 2019) demonstrated the conditions for 
the dependence of these two parts.

More information on the theory of functions of a complex-valued variable can be obtained 
from the manual “Complex numbers and functions of a complex variable” (Gamova, 2022; 
Peña, 2011). For further research in the framework of this paper, the presented information is 
more than sufficient.

Results and Discussion
Complex-valued autogression model
Let us examine models of complex-valued autoregressions for short-term forecasting (Sve-

tunkov, 2021).
In general, the complex autoregressive model can go as follows:

y iy F y iy it t t t t t

p

1 2 1 2 1 2

1

� � � � �� �
�
� ( ) ( )( ) ( )� �
�

� �                              (7)

where,
y t1  and iy t2  are the real variables predicted at time t; 
i is the imaginary unit, i � �1 ;
F is some complex-valued function; 
τ  is the autoregressive lag; 
p is the autoregressive order; 
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ε1t  and ε2t  are the approximation errors of the first and second variables at time t.
Depending on the type of function F, complex autoregressions can be linear and nonlinear. 

Nonlinear autoregressive models of real variables are not often encountered in either practical 
applications or theoretical studies. Therefore, we will use linear autoregressions and denote 
them as CAR(p). Thus, the considered complex-valued autoregressive models CAR(p) in gen-
eral will be presented in the following form:

y iy b ib a ia y iy it t t t t t1 2 0 1 0 1 1 2 1 2� � � � � � � �� �( ) ( )( ) ( )( ) ( )� � � �
�

� �
��
�
1

p

                 (8)
where,
b0  and b1  are coefficients (free terms) reflecting the initial value of the complex series; 
a0τ  and a1τ  are proportionality coefficients. 
If we center the variables relative to the arithmetic mean, we can get rid of the free terms.
Then, the first-order complex autoregression CAR(1) can be represented as:

y y a ia y iyt t t t
 

1 2 01 11 1 1 2 1� � � �� �( )( )( ) ( )
                                  (9)

In this model, two variables are predicted. We transform this model to predict one variable, 
taking the second variable equal to the error ε t , because it can serve as a characteristic of the 
process. Our model will take the following form:

y a ia y it t t t

p
 � � � �� �

�
�� �� � � �
�

( )( )0 1

1                                   (10)
This model is usually refered to as a complex-valued autoregression with error and is denoted 

by CARE(p).
The idea of such a complex model was put forward first by I.S. Svetunkov back in 2011, 

when the complex-valued form of the exponential smoothing model was presented (Svetunk-
ov, 2012; Racine, 2019). Research has shown that the complex-valued exponential smoothing 
model provides more accurate economic forecasts compared to exponential smoothing models 
of real variables (Svetunkov, 2015).

The CARE(p) model, as discussed earlier, can be represented as a system of two real vari-
ables:

y a y a

a a y

t t t

pp

t t t





� �

� �

� �
��

� �
�

�� ( ) ( )

( ) ( )

0 1

11

0 1

� � � �
��

� � � �
�

�

� �
111

pp

��
�

�

�
��

�
�
� �                                     (11)

Then for the real part of the complex-valued model we get:

ReCARE: y a y at t t

pp
 � �� �

��
�� ( ) ( )0 1

11

� � � �
��

�                              (12)

And for the imaginary part of this model:

ImCARE: � �� � � �
��



t t t

pp

a a y� �� �
��
�� ( ) ( )0 1

11

                             (13)

Thus, in economic forecasting, in addition to the general CARE(p) model, two other inde-
pendent models can be used: ReCARE(p) and ImCARE(p) (Svetunkov, 2020).
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Using the CARE(p) model and comparing the CARE(1) and CARE(2) models
As mentioned earlier, the CARE(p) model can be used as a system of two equalities:

ReCARE: y a y at t t

pp
 � �� �

��
�� ( ) ( )0 1

11

� � � �
��

�                        (14)

ImCARE: � �� � � �
��



t t t

pp

a a y� �� �
��
�� ( ) ( )0 1

11

                       (15)

These models describe a series with some error, and the problem of estimating the coeffi-
cients a0τ  and a1τ  is reduced to minimizing the sum of the squares of this error. For models 
(14) and (15), these errors are respectively equal to:

Re: � � �y yt t
                                               (16)

Im: � � �� �t t
                                               (17)

Moreover, if we minimize the sum of squares (16), then the errors (17) will be very large, 
and vice versa.

For the study, series No. 2810 was taken from the International Institute of Forecasters da-
tabase. For this series, forecast values ( yt ) and forecast deviations (ε t ) were calculated using 
the CARE(1) and CARE(2) models.

The results obtained are presented in Figure 2.

Fig. 2. Initial series yt  and calculated values of the model ReCARE(p).

The model, as can be seen from the figure, described the series well and was able to capture 
the trends of change. There is no particular difference between the models ReCARE(1) and 
ReCARE (2).

The results obtained for the model ImCARE(p) are presented in Figure 3.



20

Models ImCARE(1) and ImCARE(2) also coped well with the task. They adequately de-
scribed the deviations of their own models. However, these models described errors ε t , with ab-
solutely different coefficients a0τ  and a1τ  from models ReCARE(1) and ReCARE(2). Here, the 
question does arise: “How did the calculated values yt  deal with the coefficients a0τ  and a1τ  
of models ReCARE(1) and ReCARE(2)?” In order to respond, it is necessary to minimize the 
sum of the squares of the approximation error µ  (17) in models ReCARE(1) and ReCARE(2). 
Figure 4 depicts the obtained results.

Fig. 3. Deviations ε t  and calculated values of model deviations ImCARE(p).

Fig. 4. Initial series yt  and calculated values for the model coefficients ImCARE(1) and ImCARE(2).

These models also capture the trend of change, but it is as if the model with ImCARE(1) 
coefficients is shifted along the ordinate axis below the actual values by some fixed value. The 
model with ImCARE(2) coefficients described the original values yt  way better.
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The only remaining thing to do is to find out what calculated values of deviations ε t  will be 
obtained when using the coefficients of the ReCARE(1) and ReCARE(2) models. In order to 
do so, the ImCARE(1) and ImCARE(2) models will be used, but the sums of the squares of the 
error ε  (16) will be minimized. Figure 5 demonstrates the results.

Fig. 5. Deviations ε t  and calculated values of deviations for the 
coefficients of models ReCARE(1) and ReCARE(2).

It is no surprise that the deviations of the two models are very close, since their calculated 
values are also close (Fig. 2). What is more interesting is that the calculated values of the de-
viations ε t  capture the trend of change, but again there is a shift along the ordinate axis lower 
by some value.

It is difficult to describe the scope of application of the ImCARE (p) model, since it does not 
predict the values of yt , but the characteristics it calculates can probably serve as an additional 
characteristic of the process under study, which remains unclear.

For further research, we took the same series №2810 from the International Institute of 
Forecasters database. This series consists of 71 observations. This time we will split it into two 
parts – training and testing. The first 67 observations will be training, and the coefficients of the 
ReCARE(1) and ReCARE(2) models will be calculated on them. The last 4 observations will 
serve as testing for these models. The later will be compared by calculating the relative error. 
Table 1 summarizes the results.

Table 1. Comparison of ReCARE(1) and ReCARE(2) models

Observation 
No. y

1 order 2 order

yt  Re Error, % yt  Re Error, %

68 3181.4 3179.938 0.045955939 3202.492 0.66299386

69 3129.1 3135.165 0.193818401 3146.096 0.543160288

70 3086.6 3107.248 0.668957055 3116.743 0.976576857

71 3081.5 3077.714 0.122854666 3084.117 0.084934346
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The table shows that both models coped with the task and were able to predict the next 
values with an accuracy of over 99%. The ReCARE(1) model did a better job, although the 
ReCARE(2) model also performed well.

Now, using the same principle, we will compare the ImCARE(1) and ImCARE(2) models, 
only the calculated values will be compared with the deviation ε , each model will have its own 
deviations, since the calculated values yt  differ. The results are given in Table 2.

Table 2. Comparison of ImCARE(1) and ImCARE(2) models

Observation 
No.

1 order 2 order

ε  Im ε  Im Error, % ε  Im ε  Im Error, %

68 264.7697 278.7766 5.290202952 45.54745 33.06735 27.40020701

69 3296.899 3294.786 0.059053573 216.462 217.8235 0.628957094

70 3359.584 3358.786 0.023741284 1703.596 1755.585 3.051706806

71 3457.8 3417.41 1.168089727 3466.573 3411.657 1.584169878

The ImCARE(1) model showed a more accurate result. The ImCARE(2) model also showed 
a good result, except for the 68th observation. It should also be noted that both models showed 
absolutely different results on the same observations, with the difference reaching the order of 
thousands. Moreover, ε  increases in both cases from 68 to 71 observations. The deviations of 
ε  itself are smaller when using the second-order model.

In this regard, the behavior yt  of the coefficients of the ImCARE(1) and ImCARE(2) mod-
els became interesting. The comparison was carried out according to the same principle. Table 
3 presents the obtained results.

Table 3. Comparison yt  of the coefficients of the ImCARE(1) and ImCARE(2) models

Observation 
No. y

1 order 2 order

yt  Im Error, % yt  Im Error, %

68 3181.4 2916.63 8.322427811 3135.853 1.431679331

69 3129.1 -167.799 105.3625424 2912.638 6.917709369

70 3086.6 -272.984 108.8441611 1383.004 55.19328402

71 3081.5 -376.3 112.2115983 -385.073 112.4962837

Surprisingly enough, 68 and 69 observations of the 2nd order model can be considered quite 
good. For a more detailed analysis, graphs are presented below (Fig. 6).
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Fig. 6. Initial series yt  and calculated forecast values for model coefficients ImCARE(1) and ImCARE(2).

As can be seen from the figure, these models described the training set quite well up to the 
68th observation (although the ReCARE(p) model did better). Starting from the 69th obser-
vation, the model with the ImCARE(1) coefficients went into disarray. The model with the 
ImCARE(2) did so starting from the 71st observation, although it started showing poor results 
already at the 70th observation.

Comparing the deviations and their error using the coefficients of the ReCARE(1) and Re-
CARE(2) models does not make any sense, since when using these models they did a poor job 
in describing the original series (Fig. 5).

Comparison of AR(p) and CARE(p) models
The general form of the autoregressive model AR(p) is:

y a yt t

p
 � �

�
� � �
� 1                                                (18)

With its help, stationary processes are modeled, each current value of yt  which is deter-
mined by previously accumulated values y yt t− −1 2, , etc.

In order to construct this model, and namely to determine the values of the coefficients aτ , 
as for the ReCARE model, it is necessary to minimize the sum of the squares of the deviations 
ε :

� � �y yt t
                                                  (19)

As can be seen from the model, it is not oriented towards taking into account the approxi-
mation errors ε .

To begin with, let's construct a first-order model, which will take the form:
y a yt t
 � �1 1                                                  (20)

For the analysis we will use the same series #2810 from the International Institute of Fore-
casters database.

Figure 7 presents the obtained results.
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Overall, the model did a good job. It described the series perfectly well and captured the 
trend of changes. However, the ReCARE model will be able to compete with it, since Figure 7 
and Figure 1 are quite similar.

Next, we will build a second-order autoregressive model, it will take the form:
y a y a yt t t
 � �� �1 1 2 2

                                           (21)
Figure 8 presents the obtained results.

Fig. 7. Initial series yt  and calculated values of the model AR(1).

Fig. 8. Initial series yt  and calculated values of the model AR(2).
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No significant changes are observed. The model performed well, as did the models in Figures 
1 and 7.

The ReCARE model performed no worse or better than the well-known AR model, meaning 
that the ReCARE model is competitive. Now, let's compare the ReCARE(p) and AR(p) models 
in numerical values.

In order to compare two different models, we need a more precise criterion than just a sin-
gle-strength error. Deviations from the test set are not always the best indicator for choosing a 
model, since only the last values are compared, not the entire series.

In order to compare the results, three most commonly used approximation accuracy char-
acteristics were calculated:

1. Root mean square deviation of the approximation error (RMSD);
2. Akaike information criterion (AIC);
3. Bayesian information criterion (BIC).
The standard deviation of the error shows how large or, on the contrary, insignificant the 

errors of approximation of the entire series were. The smaller RMSD – the better. The last 
two criteria show the “clutter” of the model; by comparison, they can be used to determine a 
simpler model that retains the accuracy results.

First, as with the ReCARE(1) and ReCARE(2) models, we will split the data into training 
and testing data, and then check how the AR(1) and AR(2) models performed and compare 
them with other models based on the specified criteria. Table 4 summarizes the obtained data.

Table 4. Comparison of approximation accuracies of the ReCARE(p) and AR(p) models

AR

Observation RMS
(1st order) AIC (1) BIC (1) RMS

(2nd order) AIC (2) BIC (2)

68 192.1437 10.54589868 10.5785385 185.3886 10.50373156 10.5690112

69 304.6962 11.46761622 11.49999457 305.2839 11.50045567 11.56521238

70 371.4359 11.86332406 11.89544542 373.6194 11.90361787 11.96786059

71 420.8575 12.11275749 12.14462622 423.5752 12.15380011 12.21753758

ReCARE

Observation RMS 
(1st order) AIC (1) BIC (1) RMS

(2nd order) AIC (2) BIC (2)

68 180.18735 10.4468178 10.51209748 172.05523 10.4132781 10.54383738

69 304.6941 11.4965877 11.56134439 301.72071 11.5349456 11.66445901

70 375.75992 11.9150437 11.97928646 372.20506 11.9531756 12.08166102

71 420.75671 12.1404476 12.20418503 422.58824 12.2054726 12.33294752

All models showed the best result on the first observation, which is understandable, because 
the problem is short-term forecasting. In fact, all models coped with forecasting specific ob-
servations with approximately equal accuracy. The ReCARE(2) model showed the best results 
in forecasting the 68th (although the ReCARE(1) model also coped better than the models of 
ordinary autoregression). This indicates the accuracy of the ReCARE model.

Conclusion
In this research, the theory of complex-valued variable functions was considered, and the 

model of complex-valued autoregression of the CARE(p) was studied. Autoregression of this 
type consists of two parts: ReCARE(p) and ImCARE(p).
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The ReCARE(p) model is excellent at learning from the given data, picking up on trends, 
and being able to “predict” the data with excellent accuracy.

The ImCARE(p) model is well-oriented to predict approximation errors, but with com-
pletely different coefficients from the ReCARE(p) model. The model is well trained to predict 
the values themselves but is only capable of producing good results for one step, while the Re-
CARE(p) model with its coefficients produces a result much more accurately. This model needs 
to be studied in more detail to recognize its practical application.

When comparing the ReCARE(p) model with the standard autoregressive (AR) model, the 
ReCARE(p) model showed a more accurate result when forecasting for one step; the standard 
deviation was 180.187 (first order) and 172.055 (second order) against 192.144 and 185.389, 
respectively. This indicates the advantage of the complex-valued autoregressive model. These 
two models are short-term forecasting models, so when forecasting for more steps than one, 
they showed slightly worse results. Nevertheless, the accuracy of these results is quite high; the 
models coped with the task at about the same level.
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