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Annotamus. B maHHOI cTaThe paccMaTpuBaeTcsl BO3MOXHOCTh MPOTHO3UPOBAHUST 3HAYCHU
psiZia C UCTIOJIb30BAaHUEM KOMIUIEKCHO3HAYHOI aBTOPETPECCUU C OIIIMOKOM TSI KPATKOCPOYHOTO
MPOrHo3MpoBaHusi. PaccMaTpuBaloTCs OCHOBHBIE TOHSATHS TeOPUU (DYHKIIMU KOMILJIEKCHO3HAY-
HOTO0 TMEPEMEHHOTO W MOJEIV KOMITJIEKCHO3HAYHOUW aBTOPETPECCUM, TPUBOMASITCS PE3YIbTaThI
NPUMEHEHUS MOJIEJel MEepBOro W BTOPOTO MOpSAKAa KOMIUIEKCHO3HAYHOW aBTOPErpeccur ¢
omm6okoit CARE(p) st onmcaHust 1 TPOTHO3MPOBAHUS UCXOAHOTO Psijia, CPABHUBAIOTCS TIOJTY-
YEHHBIE PE3YJIbTATHI C PE3YJIbTATAMU aBTOPETPECCHUU MEPBOTO U BTOPOTO MOPSAKOB B AEHCTBU-
TeJBHBIX YMCiax. B pesyibTare uvccienoBaHus, aBTOpaMu ObUT cliejaH BBIBOA O BO3MOXHOCTHU
TMPUMEHEHUST MOJIEJIM KOMIUIEKCHO3HAYHOI aBTOpPErpecuu C OLIMOKOM, TaK KaK OHa IoKaszaja
0oJiee TOUHBIN pe3yabTaT Al KPATKOCPOYHOTO MPOTHO3UPOBAHUSI, B OTJIWYME OT MOACIU aB-
TOperpeccur B JACHCTBUTENbHBIX UMCIaX. Tak Xe JejlaeTcsl BBIBOM, YTO KOMIUIEKCHO3HAYHasI
aBTOperpeccus ¢ OIIMOKON MOMIEXUT MajlbHEHIEeMy MCCIENOBAHUIO, YTOOBI BBISICHUTH BO3-
MOXXHOCTb MPUMEHEHUS €€ MHAMOK YacTH.

KioueBbie cj10Ba: KOMITJIEKCHO3HAUYHAs aBTOpErpeCcCusd C 0].LII/I6KOI7[, KOMIUIEKCHBIE 4uCJia,
KpaTkKOoCpOYHOC ITPOTHO3MPOBAHUEC, MOJCIb aBTOPETPECCHUUN, CPEAHEKBAAPATUYHOC OTKJIOHCHUEC,
(bYHKHI/IH KOMIUICKCHO3HAYHOI'0 NMMEPEMECHHOTI'O
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Introduction

Nowadays, humans often ask themselves the question, “What’s coming?”. We tend to find
specific interest in the events that are coming even if it is impossible to look into the future.
Many forecasters try to make their prognosis as close to reality as possible. Unfortunately, a
forecast can never be one hundred percent correct, since numbers and formulas fail to describe
our complex and constantly changing world. Still, everyone is trying to find a model that will
be able to capture the trends of change.

As the volume of data in today's information society grows, forecasting plays an important
role in various fields, from economics and finance to data science and marketing. Forecasting is
an integral part of our lives. Every day we attempt to predict the outcome of various events and
calculate our chances for all possible options. We even check out the weather forecast before
going outside.

There are many different models that are capable of “predicting” the future to varied de-
grees. This research focuses on modelling stationary reversible processes that can be predicted
using autoregressive models. Today, autoregressive models are the most frequently used ones in
short-term economic forecasting (Svetunkov, 2021). For some reason, most forecasters use real
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numbers for their forecasts, considering complex numbers to be the prerogative of physicists
and mathematicians (Doronin, 2023; Andrei, 2021). It does make sense, since complex num-
bers consist of two parts: real and imaginary. However, what is the imaginary part in the real
world? Most forecasters probably stumble at this question and get back to the well familiar real
numbers. For example, when modelling production processes, production functions of complex
variables describe these processes in more detail and, in a number of cases, demonstrate greater
accuracy than production functions of real variables (Svetunkov, 2019).

In this paper the authors briefly review the theory of complex-valued variables and examine
the application of complex-valued autoregressive models such as CARE.

Materials and Methods
A complex number is a pair of numbers consisting of two parts — real and imaginary:
Z=x+iy

where,

x is the real part of a complex number;

iy is the imaginary part of a complex number;

x and y are real numbers;

i is the imaginary unit, which satisfies the equality: i = \/—_1

Complex numbers are quite an interesting tool that gives more possibilities, unlike real num-
bers. At the same time, it is possible to carry out all the same operations with real numbers as
with complex numbers (Vasilyeva, 2019). Why then, is this tool not as popular among forecast-
ers? It happens to be all about the imaginary part. Many do not understand its meaning in the
real world, which is clear, because there is nothing imaginary in our world, only real. In fact,
complex numbers are simply a tool for reflecting reality, like any procedure in mathematics, so
almost any characteristic of a process can become imaginary.

A complex number consists of a pair of numbers. Thus, in order to reflect it on a plane, two
numerical axes must be used. The real part of the number is plotted along the abscissa axis, and
the imaginary part along the ordinate axis. Figure 1 shows a complex number in a Cartesian
coordinate system.

Fig. 1. Complex number in Cartesian coordinate system.

A complex number can be represented as a vector that starts at the origin and ends at point
Z. Then any complex number can be represented in polar coordinates:
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z=x+iy=r(cos@+ising) (2)
where,

@ 1is the polar angle;

r is the polar radius (vector length), which is called the modulus of a complex number
(Zvereva, 2021).

The modulus of a complex number is equal to:

F=ax 4+’ (3)

The polar angle can also be easily found:

Y
@ = arctg . + 2k )
where,

k is an integer. Sometimes the polar angle is called the argument of a complex number. In
most cases, the condition k = 0 is accepted.

The fact that complex numbers can be considered simultaneously in both Cartesian and
polar coordinates is their advantage over real numbers. Another important property of complex
numbers, which will be useful to us for further research, is that two complex numbers are equal
to each other if and only if their real and imaginary parts are equal to each other:

We will consider the following form as a more compact:
Y, =1.(x,)
Yi= fi(xi) (6)

It is important to note that in this form of notation we have gotten rid of the imaginary unit,
and for those who are not familiar with the theory of functions of a complex-valued variable,
it will be easier to perceive this equality (the imaginary unit remains only in the indices to dis-
tinguish between variables). Modern researchers who use random variables in their work always
believe that their parts (real and imaginary) are independent of each other (Tavares, 2006; 2007;
Kennedy, 2008). Some scientists also consider the dependence of these parts, although they add
the prefix “pseudo” — pseudo covariance or pseudo dispersion (Kammeyer, 2002; Picinbono,
2009). S.G. Svetunkov in his works (Svetunkov, 1999; 2019) demonstrated the conditions for
the dependence of these two parts.

More information on the theory of functions of a complex-valued variable can be obtained
from the manual “Complex numbers and functions of a complex variable” (Gamova, 2022;
Peca, 2011). For further research in the framework of this paper, the presented information is
more than sufficient.

Results and Discussion

Complex-valued autogression model

Let us examine models of complex-valued autoregressions for short-term forecasting (Sve-
tunkov, 2021).

In general, the complex autoregressive model can go as follows:

v =S - : (7)
Ve T = ZF(yl(t—r) +ly2(,_7)) + (31, +182t)
=1

where,

Vi, and iy,, are the real variables predicted at time t;
i is the imaginary unit, i = \/TI ;

F is some complex-valued function;

T is the autoregressive lag;

p is the autoregressive order;
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g, and g, are the approximation errors of the first and second variables at time t.

Depending on the type of function F, complex autoregressions can be linear and nonlinear.
Nonlinear autoregressive models of real variables are not often encountered in either practical
applications or theoretical studies. Therefore, we will use linear autoregressions and denote
them as CAR(p). Thus, the considered complex-valued autoregressive models CAR(p) in gen-
eral will be presented in the following form:

)4
Yy iy, =(by + ibl)+z(a07 +ia,, )(yl(t—r) +iy2(t—r)) +(¢, +ig,,) (8)
where, =
b, and b, are coefficients (free terms) reflecting the initial value of the complex series;
a,, and q, are proportionality coefficients.
If we center the variables relative to the arithmetic mean, we can get rid of the free terms.
Then, the first-order complex autoregression CAR(1) can be represented as:
Yie Yo = (g i, )Yy +1V5)) )
In this model, two variables are predicted. We transform this model to predict one variable,
taking the second variable equal to the error g, , because it can serve as a characteristic of the

process. Our model will take the following form:

A~

R p
yt +&r = Z(aor + ialr )(yt—r + igt—r)
v (10)

This model is usually refered to as a complex-valued autoregression with error and is denoted
by CARE(p).

The idea of such a complex model was put forward first by I.S. Svetunkov back in 2011,
when the complex-valued form of the exponential smoothing model was presented (Svetunk-
ov, 2012; Racine, 2019). Research has shown that the complex-valued exponential smoothing
model provides more accurate economic forecasts compared to exponential smoothing models
of real variables (Svetunkov, 2015).

The CARE(p) model, as discussed earlier, can be represented as a system of two real vari-
ables:

~ P p
yt = Z (aO‘ryt—T ) - Z (alrer—r )
=1 =1

~ P P
&r = z (aOTgt—r) + Z (alryt—r)
=1 =1

Then for the real part of the complex-valued model we get: v
ReCARE: ¥, = i(aofy,f ) i(al,s,r) (12)
And for the imaginary part of this model:
ImCARE: &, = Zp:(amgt,, )+ Ep: (a.y,.) (13)
=1 =1

Thus, in economic forecasting, in addition to the general CARE(p) model, two other inde-
pendent models can be used: ReCARE(p) and ImMCARE(p) (Svetunkov, 2020).
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Using the CARE(p) model and comparing the CARE(1) and CARE(2) models
As mentioned earlier, the CARE(p) model can be used as a system of two equalities:

A~ P )4

ReCARE: ¥, = (ay.y,.)— > (a.€,._.) (14)
7=1 =1
A )4 )4

IMCARE: & =) (ay.¢,_)+ Y. (a,¥,.) (15)
=1 =1

These models describe a series with some error, and the problem of estimating the coeffi-
cients @, and g, is reduced to minimizing the sum of the squares of this error. For models
(14) and (15), these errors are respectively equal to:

Re: E=Yy,—Y, (16)

Im: u=¢,—-¢: (17)

Moreover, if we minimize the sum of squares (16), then the errors (17) will be very large,
and vice versa.

For the study, series No. 2810 was taken from the International Institute of Forecasters da-
tabase. For this series, forecast values (y,) and forecast deviations (&.) were calculated using
the CARE(1) and CARE(2) models.

The results obtained are presented in Figure 2.

Fig. 2. Initial series V, and calculated values of the model ReCARE(p).

The model, as can be seen from the figure, described the series well and was able to capture
the trends of change. There is no particular difference between the models ReCARE(1) and
ReCARE (2).

The results obtained for the model ImCARE(p) are presented in Figure 3.

19



Fig. 3. Deviations &, and calculated values of model deviations InCARE(p).

Models ImMCARE(1) and ImMCARE(2) also coped well with the task. They adequately de-
scribed the deviations of their own models. However, these models described errors g, , with ab-
solutely different coefficients a,, and g, from models ReCARE(1) and ReCARE(2). Here, the
question does arise: “How did the calculated values y, deal with the coefficients @, and a
of models ReCARE(1) and ReCARE(2)?” In order to respond, it is necessary to minimize the
sum of the squares of the approximation error ¢ (17) in models ReCARE(1) and ReCARE(2).
Figure 4 depicts the obtained results.

Fig. 4. Initial series ), and calculated values for the model coefficients INCARE(1) and ImCARE(2).

These models also capture the trend of change, but it is as if the model with ImCARE(1)
coefficients is shifted along the ordinate axis below the actual values by some fixed value. The
model with ImnCARE(2) coefficients described the original values y, way better.
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The only remaining thing to do is to find out what calculated values of deviations g, will be
obtained when using the coefficients of the ReCARE(1) and ReCARE(2) models. In order to
do so, the INCARE(1) and ImMCARE(2) models will be used, but the sums of the squares of the
error &€ (16) will be minimized. Figure 5 demonstrates the results.

Fig. 5. Deviations &, and calculated values of deviations for the
coefficients of models ReCARE(1) and ReCARE(2).

It is no surprise that the deviations of the two models are very close, since their calculated
values are also close (Fig. 2). What is more interesting is that the calculated values of the de-
viations g, capture the trend of change, but again there is a shift along the ordinate axis lower
by some value.

It is difficult to describe the scope of application of the ImMCARE (p) model, since it does not
predict the values of y,, but the characteristics it calculates can probably serve as an additional
characteristic of the process under study, which remains unclear.

For further research, we took the same series Ne2810 from the International Institute of
Forecasters database. This series consists of 71 observations. This time we will split it into two
parts — training and testing. The first 67 observations will be training, and the coefficients of the
ReCARE(1) and ReCARE(2) models will be calculated on them. The last 4 observations will
serve as testing for these models. The later will be compared by calculating the relative error.
Table 1 summarizes the results.

Table 1. Comparison of ReCARE(1) and ReCARE(2) models

Observation 1 order 2 order
No. Y 5,[ Re Error, % )A,l Re Error, %
68 31814 3179.938 0.045955939 3202.492 0.66299386
69 3129.1 3135.165 0.193818401 3146.096 0.543160288
70 3086.6 3107.248 0.668957055 3116.743 0.976576857
71 3081.5 3077.714 0.122854666 3084.117 0.084934346
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The table shows that both models coped with the task and were able to predict the next
values with an accuracy of over 99%. The ReCARE(1) model did a better job, although the
ReCARE(2) model also performed well.

Now, using the same principle, we will compare the ImMCARE(1) and ImCARE(2) models,
only the calculated values will be compared with the deviation &, each model will have its own
deviations, since the calculated values y, differ. The results are given in Table 2.

Table 2. Comparison of InCARE(1) and ImCARE(2) models

Observation 1 order 2 order
No. e Im s Im Error, % ¢ Im s Im Error, %
68 264.7697 278.7766 5.290202952 | 45.54745 33.06735 27.40020701
69 3296.899 3294.786 0.059053573 216.462 217.8235 0.628957094
70 3359.584 3358.786 0.023741284 1703.596 1755.585 3.051706806
71 3457.8 3417 .41 1.168089727 3466.573 3411.657 1.584169878

The ImMCARE(1) model showed a more accurate result. The ImCARE(2) model also showed
a good result, except for the 68th observation. It should also be noted that both models showed
absolutely different results on the same observations, with the difference reaching the order of
thousands. Moreover, € increases in both cases from 68 to 71 observations. The deviations of
¢ itself are smaller when using the second-order model.

In this regard, the behavior ), of the coefficients of the INCARE(1) and ImCARE(2) mod-
els became interesting. The comparison was carried out according to the same principle. Table
3 presents the obtained results.

Table 3. Comparison ), of the coefficients of the InCARE(1) and InCARE(2) models

Observation 1 order 2 order
No. y )A;[ Im Error, % ;t Im Error, %
68 3181.4 2916.63 8.322427811 3135.853 1.431679331
69 3129.1 -167.799 105.3625424 2912.638 6.917709369
70 3086.6 -272.984 108.8441611 1383.004 55.19328402
71 3081.5 -376.3 112.2115983 -385.073 112.4962837

Surprisingly enough, 68 and 69 observations of the 2nd order model can be considered quite
good. For a more detailed analysis, graphs are presented below (Fig. 6).
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Fig. 6. Initial series ), and calculated forecast values for model coefficients INCARE(1) and InCARE(2).

As can be seen from the figure, these models described the training set quite well up to the
68th observation (although the ReCARE(p) model did better). Starting from the 69th obser-
vation, the model with the ImMCARE(1) coefficients went into disarray. The model with the
ImCARE(2) did so starting from the 71st observation, although it started showing poor results
already at the 70th observation.

Comparing the deviations and their error using the coefficients of the ReCARE(1) and Re-
CARE(2) models does not make any sense, since when using these models they did a poor job
in describing the original series (Fig. 5).

Comparison of AR(p) and CARE(p) models

The general form of the autoregressive model AR(p) is:

~ P
yt_;aryt—r (18)

With its help, stationary processes are modeled, each current value of y, which is deter-
mined by previously accumulated values y,_;,Y,,, etc.

In order to construct this model, and namely to determine the values of the coefficients a_,
as for the ReCARE model, it is necessary to minimize the sum of the squares of the deviations
g: ~

E=Y, — (19)

As can be seen from the model, it is not oriented towards taking into account the approxi-
mation errors & .

To begin with, let's construct a first-order model, which will take the form:

Yi=aq)iy (20)

For the analysis we will use the same series #2810 from the International Institute of Fore-
casters database.

Figure 7 presents the obtained results.
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Fig. 7. Initial series ), and calculated values of the model AR(1).

Overall, the model did a good job. It described the series perfectly well and captured the
trend of changes. However, the ReCARE model will be able to compete with it, since Figure 7
and Figure 1 are quite similar.

Next, we will build a second-order autoregressive model, it will take the form:

Vi=ay,tay,, (21)

Figure 8 presents the obtained results.

Fig. 8. Initial series ), and calculated values of the model AR(2).
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No significant changes are observed. The model performed well, as did the models in Figures
1 and 7.

The ReCARE model performed no worse or better than the well-known AR model, meaning
that the ReCARE model is competitive. Now, let's compare the ReCARE(p) and AR(p) models
in numerical values.

In order to compare two different models, we need a more precise criterion than just a sin-
gle-strength error. Deviations from the test set are not always the best indicator for choosing a
model, since only the last values are compared, not the entire series.

In order to compare the results, three most commonly used approximation accuracy char-
acteristics were calculated:

1. Root mean square deviation of the approximation error (RMSD);

2. Akaike information criterion (AIC);

3. Bayesian information criterion (BIC).

The standard deviation of the error shows how large or, on the contrary, insignificant the
errors of approximation of the entire series were. The smaller RMSD — the better. The last
two criteria show the “clutter” of the model; by comparison, they can be used to determine a
simpler model that retains the accuracy results.

First, as with the ReCARE(1) and ReCARE(2) models, we will split the data into training
and testing data, and then check how the AR(1) and AR(2) models performed and compare
them with other models based on the specified criteria. Table 4 summarizes the obtained data.

Table 4. Comparison of approximation accuracies of the ReCARE(p) and AR(p) models

AR
Observation (lslt‘l(‘frdser) AIC (1) BIC (1) (Znﬁl‘ﬁer) AIC (2) BIC (2)
68 192.1437 | 10.54589868 | 10.5785385 | 185.3886 | 10.50373156 | 10.5690112
69 304.6962 | 1146761622 | 11.49999457 | 305.2839 | 11.50045567 | 1156521238
70 371.4359 | 11.86332406 | 11.89544542 | 373.6194 | 11.90361787 | 11.96786059
71 420.8575 | 12.11275749 | 12.14462622 | 423.5752 | 12.15380011 | 12.21753758
RcCARE
Observation (lslfl(‘)fdser) AIC (1) BIC (1) (an(}“fr?ler) AIC (2) BIC (2)
68 180.18735 | 10.4468178 | 10.51209748 | 172.05523 | 10.4132781 | 10.54383738
69 304.6941 | 11.4965877 | 11.56134439 | 301.72071 | 11.5349456 | 11.66445901
70 37575992 | 11.9150437 | 11.97928646 | 372.20506 | 11.9531756 | 12.08166102
71 42075671 | 12.1404476 | 12.20418503 | 422.58824 | 12.2054726 | 12.33294752

All models showed the best result on the first observation, which is understandable, because
the problem is short-term forecasting. In fact, all models coped with forecasting specific ob-
servations with approximately equal accuracy. The ReCARE(2) model showed the best results
in forecasting the 68th (although the ReCARE(1) model also coped better than the models of
ordinary autoregression). This indicates the accuracy of the ReCARE model.

Conclusion

In this research, the theory of complex-valued variable functions was considered, and the
model of complex-valued autoregression of the CARE(p) was studied. Autoregression of this
type consists of two parts: ReCARE(p) and ImCARE(p).
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The ReCARE(p) model is excellent at learning from the given data, picking up on trends,
and being able to “predict” the data with excellent accuracy.

The ImCARE(p) model is well-oriented to predict approximation errors, but with com-
pletely different coefficients from the ReCARE(p) model. The model is well trained to predict
the values themselves but is only capable of producing good results for one step, while the Re-
CARE(p) model with its coefficients produces a result much more accurately. This model needs
to be studied in more detail to recognize its practical application.

When comparing the ReCARE(p) model with the standard autoregressive (AR) model, the
ReCARE(p) model showed a more accurate result when forecasting for one step; the standard
deviation was 180.187 (first order) and 172.055 (second order) against 192.144 and 185.389,
respectively. This indicates the advantage of the complex-valued autoregressive model. These
two models are short-term forecasting models, so when forecasting for more steps than one,
they showed slightly worse results. Nevertheless, the accuracy of these results is quite high; the
models coped with the task at about the same level.
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